{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Voters"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import statsmodels.api as sm"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Replicate Figure 1\n",
"\n",
"We replicate Figure 1 by rewriting `Dofiles/Analysis/analysis_votechoice.do` in Python. This draws data from `Data/Analysis/analysis_indiv.dta` to run the following regression:\n",
"\n",
"> `reg int_act calsurv_dummy* calweekday* caldummy_pos caldistpos_dummy* dummy*, hascons cl(id_clust)`.\n",
"\n",
"The coefficients of `dummy*` are then used to generate the figure."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load raw data and subset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" month_pre | \n",
" day_pre | \n",
" month_pos | \n",
" day_pos | \n",
" age | \n",
" id_resp | \n",
" day_elec | \n",
" month_elec | \n",
" year_elec | \n",
" year_pre | \n",
" ... | \n",
" new_int2 | \n",
" new_act2 | \n",
" winner_int | \n",
" winner_act | \n",
" watch | \n",
" small_int | \n",
" small_act | \n",
" small_int2 | \n",
" small_act2 | \n",
" rcs | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 9.0 | \n",
" 11.0 | \n",
" 10.0 | \n",
" 27.0 | \n",
" 56.0 | \n",
" 3876.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" NaN | \n",
" 1.0 | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 8.0 | \n",
" 29.0 | \n",
" 11.0 | \n",
" 4.0 | \n",
" 27.0 | \n",
" 102.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" NaN | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 8.0 | \n",
" 19.0 | \n",
" 10.0 | \n",
" 15.0 | \n",
" 69.0 | \n",
" 3866.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" 1.0 | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 9.0 | \n",
" 13.0 | \n",
" 10.0 | \n",
" 19.0 | \n",
" 27.0 | \n",
" 1805.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" 1.0 | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 9.0 | \n",
" 11.0 | \n",
" 10.0 | \n",
" 11.0 | \n",
" 50.0 | \n",
" 2698.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" NaN | \n",
" 1.0 | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 336249 | \n",
" 9.0 | \n",
" 2.0 | \n",
" NaN | \n",
" NaN | \n",
" 29.0 | \n",
" 18989.0 | \n",
" 14.0 | \n",
" 9.0 | \n",
" 2014.0 | \n",
" 2014.0 | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
"
\n",
" \n",
" 336250 | \n",
" 9.0 | \n",
" 6.0 | \n",
" NaN | \n",
" NaN | \n",
" 43.0 | \n",
" 16682.0 | \n",
" 14.0 | \n",
" 9.0 | \n",
" 2014.0 | \n",
" 2014.0 | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
"
\n",
" \n",
" 336251 | \n",
" 9.0 | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" 29.0 | \n",
" 5249.0 | \n",
" 14.0 | \n",
" 9.0 | \n",
" 2014.0 | \n",
" 2014.0 | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
"
\n",
" \n",
" 336252 | \n",
" 9.0 | \n",
" 2.0 | \n",
" NaN | \n",
" NaN | \n",
" 46.0 | \n",
" 9241.0 | \n",
" 14.0 | \n",
" 9.0 | \n",
" 2014.0 | \n",
" 2014.0 | \n",
" ... | \n",
" 0.0 | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" 0.0 | \n",
"
\n",
" \n",
" 336253 | \n",
" 9.0 | \n",
" 3.0 | \n",
" 9.0 | \n",
" 15.0 | \n",
" 53.0 | \n",
" 87.0 | \n",
" 14.0 | \n",
" 9.0 | \n",
" 2014.0 | \n",
" 2014.0 | \n",
" ... | \n",
" 0.0 | \n",
" NaN | \n",
" 0.0 | \n",
" NaN | \n",
" 1.0 | \n",
" 1.0 | \n",
" NaN | \n",
" 1.0 | \n",
" NaN | \n",
" 0.0 | \n",
"
\n",
" \n",
"
\n",
"
336254 rows × 93 columns
\n",
"
"
],
"text/plain": [
" month_pre day_pre month_pos day_pos age id_resp day_elec \n",
"0 9.0 11.0 10.0 27.0 56.0 3876.0 29.0 \\\n",
"1 8.0 29.0 11.0 4.0 27.0 102.0 29.0 \n",
"2 8.0 19.0 10.0 15.0 69.0 3866.0 29.0 \n",
"3 9.0 13.0 10.0 19.0 27.0 1805.0 29.0 \n",
"4 9.0 11.0 10.0 11.0 50.0 2698.0 29.0 \n",
"... ... ... ... ... ... ... ... \n",
"336249 9.0 2.0 NaN NaN 29.0 18989.0 14.0 \n",
"336250 9.0 6.0 NaN NaN 43.0 16682.0 14.0 \n",
"336251 9.0 5.0 NaN NaN 29.0 5249.0 14.0 \n",
"336252 9.0 2.0 NaN NaN 46.0 9241.0 14.0 \n",
"336253 9.0 3.0 9.0 15.0 53.0 87.0 14.0 \n",
"\n",
" month_elec year_elec year_pre ... new_int2 new_act2 winner_int \n",
"0 9.0 2013.0 2013.0 ... 0.0 0.0 NaN \\\n",
"1 9.0 2013.0 2013.0 ... 0.0 0.0 1.0 \n",
"2 9.0 2013.0 2013.0 ... NaN 0.0 NaN \n",
"3 9.0 2013.0 2013.0 ... NaN 0.0 NaN \n",
"4 9.0 2013.0 2013.0 ... 0.0 0.0 NaN \n",
"... ... ... ... ... ... ... ... \n",
"336249 9.0 2014.0 2014.0 ... NaN NaN NaN \n",
"336250 9.0 2014.0 2014.0 ... NaN NaN NaN \n",
"336251 9.0 2014.0 2014.0 ... NaN NaN NaN \n",
"336252 9.0 2014.0 2014.0 ... 0.0 NaN 0.0 \n",
"336253 9.0 2014.0 2014.0 ... 0.0 NaN 0.0 \n",
"\n",
" winner_act watch small_int small_act small_int2 small_act2 rcs \n",
"0 1.0 NaN NaN 0.0 0.0 0.0 1.0 \n",
"1 1.0 NaN 0.0 0.0 0.0 0.0 1.0 \n",
"2 1.0 NaN NaN 0.0 NaN 0.0 1.0 \n",
"3 1.0 NaN NaN 0.0 NaN 0.0 1.0 \n",
"4 1.0 NaN NaN 0.0 0.0 0.0 1.0 \n",
"... ... ... ... ... ... ... ... \n",
"336249 NaN NaN NaN NaN NaN NaN 0.0 \n",
"336250 NaN NaN NaN NaN NaN NaN 0.0 \n",
"336251 NaN NaN NaN NaN NaN NaN 0.0 \n",
"336252 NaN NaN 0.0 NaN 0.0 NaN 0.0 \n",
"336253 NaN 1.0 1.0 NaN 1.0 NaN 0.0 \n",
"\n",
"[336254 rows x 93 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"analysis_indiv = pd.read_stata('../../datasets/voters/raw/Data/Analysis/analysis_indiv.dta')\n",
"analysis_indiv"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The relevant columns are:\n",
"- `survey`: name of survey\n",
"- `id_surv`: survey ID (1 to 65)\n",
"- `date_elec`: date of election\n",
"- `dist_pre`: days before election when survey was taken\n",
"- `weekday_pre`: day of the week when pre-election survey was taken\n",
"- `dist_pos`: days after election when survey was taken\n",
"- `int_act`: dummy whether respondent's intended vote in pre-election survey matches actual vote"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" survey | \n",
" id_surv | \n",
" date_elec | \n",
" dist_pre | \n",
" weekday_pre | \n",
" dist_pos | \n",
" int_act | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 31 | \n",
" 4 | \n",
" 36.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 41 | \n",
" 1 | \n",
" 16.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 16 | \n",
" 5 | \n",
" 20.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 5 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 23 | \n",
" 5 | \n",
" 35.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 6 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 33 | \n",
" 2 | \n",
" 17.0 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 334785 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 12 | \n",
" 2 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334786 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 10 | \n",
" 4 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334787 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 11 | \n",
" 3 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334788 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 12 | \n",
" 2 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334789 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 12 | \n",
" 2 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
200916 rows × 7 columns
\n",
"
"
],
"text/plain": [
" survey id_surv date_elec dist_pre weekday_pre dist_pos int_act\n",
"1 AUTNES 1 2013-09-29 31 4 36.0 1\n",
"2 AUTNES 1 2013-09-29 41 1 16.0 0\n",
"3 AUTNES 1 2013-09-29 16 5 20.0 0\n",
"5 AUTNES 1 2013-09-29 23 5 35.0 0\n",
"6 AUTNES 1 2013-09-29 33 2 17.0 1\n",
"... ... ... ... ... ... ... ...\n",
"334785 SNES 65 2014-09-14 12 2 1.0 1\n",
"334786 SNES 65 2014-09-14 10 4 1.0 1\n",
"334787 SNES 65 2014-09-14 11 3 1.0 1\n",
"334788 SNES 65 2014-09-14 12 2 1.0 0\n",
"334789 SNES 65 2014-09-14 12 2 1.0 1\n",
"\n",
"[200916 rows x 7 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analysis_indiv.copy()\n",
"df = df[['survey', 'id_surv', 'date_elec', 'dist_pre', 'weekday_pre', 'dist_pos', 'int_act']]\n",
"df = df[(df['dist_pre'] <= 60) & (df['dist_pre'] > 0)]\n",
"df.dropna(subset=['int_act'], inplace=True)\n",
"\n",
"df['id_surv'] = df['id_surv'].astype(int)\n",
"df['dist_pre'] = df['dist_pre'].astype(int)\n",
"df['weekday_pre'] = df['weekday_pre'].astype(int)\n",
"df['int_act'] = df['int_act'].astype(int)\n",
"\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1952-11-04 00:00:00')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['date_elec'].min()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare for regression\n",
"\n",
"Categorical variables must be converted to dummies and then centered on `dist_pre=1`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 False\n",
"2 False\n",
"3 False\n",
"5 False\n",
"6 False\n",
" ... \n",
"334785 False\n",
"334786 False\n",
"334787 False\n",
"334788 False\n",
"334789 False\n",
"Name: dist_pre, Length: 200916, dtype: bool"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sample_ref = df['dist_pre'] == 1\n",
"sample_ref"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"dummy = pd.get_dummies(df['dist_pre'], prefix='dummy', dtype=int)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"surv_dummy = pd.get_dummies(df['id_surv'], prefix='surv', dtype=int)\n",
"surv_mean = surv_dummy.loc[sample_ref, :].mean()\n",
"calsurv_dummy = surv_dummy.sub(surv_mean)\n",
"calsurv_dummy = calsurv_dummy.iloc[:, 1:]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"weekday_dummy = pd.get_dummies(df['weekday_pre'], prefix='weekday', dtype=int)\n",
"weekday_mean = weekday_dummy.loc[sample_ref, :].mean()\n",
"calweekday_dummy = weekday_dummy.sub(weekday_mean)\n",
"calweekday_dummy = calweekday_dummy.iloc[:, 1:]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"distpos_dummy = pd.get_dummies(df['dist_pos'], prefix='dist', dummy_na=True, dtype=int)\n",
"distpos_mean = distpos_dummy.loc[sample_ref, :].mean()\n",
"caldistpos_dummy = distpos_dummy.sub(distpos_mean)\n",
"caldistpos_dummy = caldistpos_dummy.iloc[:, 1:]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"X = pd.concat([calsurv_dummy, calweekday_dummy, caldistpos_dummy, dummy], axis=1)\n",
"y = df['int_act']"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" surv_2 | \n",
" surv_3 | \n",
" surv_4 | \n",
" surv_5 | \n",
" surv_6 | \n",
" surv_7 | \n",
" surv_8 | \n",
" surv_9 | \n",
" surv_10 | \n",
" surv_11 | \n",
" ... | \n",
" dummy_51 | \n",
" dummy_52 | \n",
" dummy_53 | \n",
" dummy_54 | \n",
" dummy_55 | \n",
" dummy_56 | \n",
" dummy_57 | \n",
" dummy_58 | \n",
" dummy_59 | \n",
" dummy_60 | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 5 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 6 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 334785 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334786 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334787 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334788 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334789 | \n",
" -0.016224 | \n",
" -0.13849 | \n",
" -0.155655 | \n",
" -0.141077 | \n",
" -0.014108 | \n",
" -0.01881 | \n",
" -0.013402 | \n",
" -0.014108 | \n",
" -0.015989 | \n",
" -0.012932 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
200916 rows × 248 columns
\n",
"
"
],
"text/plain": [
" surv_2 surv_3 surv_4 surv_5 surv_6 surv_7 surv_8 \n",
"1 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \\\n",
"2 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"3 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"5 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"6 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"... ... ... ... ... ... ... ... \n",
"334785 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"334786 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"334787 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"334788 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"334789 -0.016224 -0.13849 -0.155655 -0.141077 -0.014108 -0.01881 -0.013402 \n",
"\n",
" surv_9 surv_10 surv_11 ... dummy_51 dummy_52 dummy_53 \n",
"1 -0.014108 -0.015989 -0.012932 ... 0 0 0 \\\n",
"2 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"3 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"5 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"6 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"... ... ... ... ... ... ... ... \n",
"334785 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"334786 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"334787 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"334788 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"334789 -0.014108 -0.015989 -0.012932 ... 0 0 0 \n",
"\n",
" dummy_54 dummy_55 dummy_56 dummy_57 dummy_58 dummy_59 dummy_60 \n",
"1 0 0 0 0 0 0 0 \n",
"2 0 0 0 0 0 0 0 \n",
"3 0 0 0 0 0 0 0 \n",
"5 0 0 0 0 0 0 0 \n",
"6 0 0 0 0 0 0 0 \n",
"... ... ... ... ... ... ... ... \n",
"334785 0 0 0 0 0 0 0 \n",
"334786 0 0 0 0 0 0 0 \n",
"334787 0 0 0 0 0 0 0 \n",
"334788 0 0 0 0 0 0 0 \n",
"334789 0 0 0 0 0 0 0 \n",
"\n",
"[200916 rows x 248 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Perform regression"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"df['survey'], _ = pd.factorize(df['survey'])\n",
"df['date_elec'], _ = pd.factorize(df['date_elec'])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" survey | \n",
" id_surv | \n",
" date_elec | \n",
" dist_pre | \n",
" weekday_pre | \n",
" dist_pos | \n",
" int_act | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 31 | \n",
" 4 | \n",
" 36.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 41 | \n",
" 1 | \n",
" 16.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 16 | \n",
" 5 | \n",
" 20.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 5 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 23 | \n",
" 5 | \n",
" 35.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 6 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 33 | \n",
" 2 | \n",
" 17.0 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 334785 | \n",
" 10 | \n",
" 65 | \n",
" 45 | \n",
" 12 | \n",
" 2 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334786 | \n",
" 10 | \n",
" 65 | \n",
" 45 | \n",
" 10 | \n",
" 4 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334787 | \n",
" 10 | \n",
" 65 | \n",
" 45 | \n",
" 11 | \n",
" 3 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334788 | \n",
" 10 | \n",
" 65 | \n",
" 45 | \n",
" 12 | \n",
" 2 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334789 | \n",
" 10 | \n",
" 65 | \n",
" 45 | \n",
" 12 | \n",
" 2 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
200916 rows × 7 columns
\n",
"
"
],
"text/plain": [
" survey id_surv date_elec dist_pre weekday_pre dist_pos int_act\n",
"1 0 1 0 31 4 36.0 1\n",
"2 0 1 0 41 1 16.0 0\n",
"3 0 1 0 16 5 20.0 0\n",
"5 0 1 0 23 5 35.0 0\n",
"6 0 1 0 33 2 17.0 1\n",
"... ... ... ... ... ... ... ...\n",
"334785 10 65 45 12 2 1.0 1\n",
"334786 10 65 45 10 4 1.0 1\n",
"334787 10 65 45 11 3 1.0 1\n",
"334788 10 65 45 12 2 1.0 0\n",
"334789 10 65 45 12 2 1.0 1\n",
"\n",
"[200916 rows x 7 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"OLS Regression Results\n",
"\n",
" Dep. Variable: | int_act | R-squared: | 0.072 | \n",
"
\n",
"\n",
" Model: | OLS | Adj. R-squared: | 0.071 | \n",
"
\n",
"\n",
" Method: | Least Squares | F-statistic: | nan | \n",
"
\n",
"\n",
" Date: | Thu, 25 May 2023 | Prob (F-statistic): | nan | \n",
"
\n",
"\n",
" Time: | 12:14:17 | Log-Likelihood: | -99100. | \n",
"
\n",
"\n",
" No. Observations: | 200916 | AIC: | 1.987e+05 | \n",
"
\n",
"\n",
" Df Residuals: | 200668 | BIC: | 2.012e+05 | \n",
"
\n",
"\n",
" Df Model: | 247 | | | \n",
"
\n",
"\n",
" Covariance Type: | cluster | | | \n",
"
\n",
"
\n",
"\n",
"\n",
" | coef | std err | z | P>|z| | [0.025 | 0.975] | \n",
"
\n",
"\n",
" surv_2 | 0.1311 | 0.009 | 14.673 | 0.000 | 0.114 | 0.149 | \n",
"
\n",
"\n",
" surv_3 | 0.1050 | 0.012 | 9.114 | 0.000 | 0.082 | 0.128 | \n",
"
\n",
"\n",
" surv_4 | 0.1484 | 0.007 | 22.369 | 0.000 | 0.135 | 0.161 | \n",
"
\n",
"\n",
" surv_5 | 0.1993 | 0.006 | 34.835 | 0.000 | 0.188 | 0.211 | \n",
"
\n",
"\n",
" surv_6 | 0.0018 | 0.006 | 0.297 | 0.766 | -0.010 | 0.014 | \n",
"
\n",
"\n",
" surv_7 | -0.0542 | 0.003 | -18.761 | 0.000 | -0.060 | -0.049 | \n",
"
\n",
"\n",
" surv_8 | -0.0879 | 0.004 | -23.885 | 0.000 | -0.095 | -0.081 | \n",
"
\n",
"\n",
" surv_9 | -0.0424 | 0.003 | -12.378 | 0.000 | -0.049 | -0.036 | \n",
"
\n",
"\n",
" surv_10 | -0.0261 | 0.002 | -14.318 | 0.000 | -0.030 | -0.023 | \n",
"
\n",
"\n",
" surv_11 | 0.0186 | 0.001 | 17.571 | 0.000 | 0.017 | 0.021 | \n",
"
\n",
"\n",
" surv_12 | -0.0234 | 0.010 | -2.461 | 0.014 | -0.042 | -0.005 | \n",
"
\n",
"\n",
" surv_13 | -0.0117 | 0.003 | -3.555 | 0.000 | -0.018 | -0.005 | \n",
"
\n",
"\n",
" surv_14 | -0.0210 | 0.002 | -8.975 | 0.000 | -0.026 | -0.016 | \n",
"
\n",
"\n",
" surv_15 | -0.0609 | 0.031 | -1.994 | 0.046 | -0.121 | -0.001 | \n",
"
\n",
"\n",
" surv_16 | 0.0967 | 0.003 | 28.467 | 0.000 | 0.090 | 0.103 | \n",
"
\n",
"\n",
" surv_17 | -0.0949 | 0.003 | -36.232 | 0.000 | -0.100 | -0.090 | \n",
"
\n",
"\n",
" surv_18 | -0.0192 | 0.003 | -7.282 | 0.000 | -0.024 | -0.014 | \n",
"
\n",
"\n",
" surv_19 | -0.0338 | 0.002 | -14.979 | 0.000 | -0.038 | -0.029 | \n",
"
\n",
"\n",
" surv_20 | -0.0119 | 0.002 | -5.220 | 0.000 | -0.016 | -0.007 | \n",
"
\n",
"\n",
" surv_21 | 0.2008 | 0.004 | 55.723 | 0.000 | 0.194 | 0.208 | \n",
"
\n",
"\n",
" surv_22 | 0.2633 | 0.003 | 98.844 | 0.000 | 0.258 | 0.269 | \n",
"
\n",
"\n",
" surv_23 | 0.2211 | 0.005 | 43.026 | 0.000 | 0.211 | 0.231 | \n",
"
\n",
"\n",
" surv_24 | -0.0978 | 0.003 | -31.933 | 0.000 | -0.104 | -0.092 | \n",
"
\n",
"\n",
" surv_25 | -0.0339 | 0.003 | -11.092 | 0.000 | -0.040 | -0.028 | \n",
"
\n",
"\n",
" surv_26 | -0.0677 | 0.002 | -35.625 | 0.000 | -0.071 | -0.064 | \n",
"
\n",
"\n",
" surv_27 | 0.0089 | 0.002 | 4.661 | 0.000 | 0.005 | 0.013 | \n",
"
\n",
"\n",
" surv_28 | -0.2647 | 0.093 | -2.845 | 0.004 | -0.447 | -0.082 | \n",
"
\n",
"\n",
" surv_29 | -0.2490 | 0.093 | -2.676 | 0.007 | -0.431 | -0.067 | \n",
"
\n",
"\n",
" surv_30 | 0.2299 | 0.001 | 177.669 | 0.000 | 0.227 | 0.232 | \n",
"
\n",
"\n",
" surv_31 | 0.1351 | 0.002 | 66.140 | 0.000 | 0.131 | 0.139 | \n",
"
\n",
"\n",
" surv_32 | 0.1409 | 0.001 | 115.053 | 0.000 | 0.139 | 0.143 | \n",
"
\n",
"\n",
" surv_33 | 0.1773 | 0.001 | 166.216 | 0.000 | 0.175 | 0.179 | \n",
"
\n",
"\n",
" surv_34 | 0.2325 | 0.003 | 66.853 | 0.000 | 0.226 | 0.239 | \n",
"
\n",
"\n",
" surv_35 | 0.2477 | 0.003 | 86.169 | 0.000 | 0.242 | 0.253 | \n",
"
\n",
"\n",
" surv_36 | 0.2003 | 0.002 | 125.179 | 0.000 | 0.197 | 0.203 | \n",
"
\n",
"\n",
" surv_37 | 0.1971 | 0.002 | 114.849 | 0.000 | 0.194 | 0.200 | \n",
"
\n",
"\n",
" surv_38 | 0.0105 | 0.002 | 5.665 | 0.000 | 0.007 | 0.014 | \n",
"
\n",
"\n",
" surv_39 | 0.1289 | 0.004 | 30.273 | 0.000 | 0.121 | 0.137 | \n",
"
\n",
"\n",
" surv_40 | 0.0177 | 0.002 | 10.193 | 0.000 | 0.014 | 0.021 | \n",
"
\n",
"\n",
" surv_41 | -0.0403 | 0.010 | -4.097 | 0.000 | -0.060 | -0.021 | \n",
"
\n",
"\n",
" surv_42 | -0.1246 | 0.003 | -42.495 | 0.000 | -0.130 | -0.119 | \n",
"
\n",
"\n",
" surv_43 | 0.0563 | 0.009 | 6.124 | 0.000 | 0.038 | 0.074 | \n",
"
\n",
"\n",
" surv_44 | 0.1851 | 0.002 | 79.500 | 0.000 | 0.181 | 0.190 | \n",
"
\n",
"\n",
" surv_45 | 0.2186 | 0.002 | 144.724 | 0.000 | 0.216 | 0.222 | \n",
"
\n",
"\n",
" surv_46 | 0.1201 | 0.002 | 70.394 | 0.000 | 0.117 | 0.123 | \n",
"
\n",
"\n",
" surv_47 | 0.2410 | 0.004 | 67.671 | 0.000 | 0.234 | 0.248 | \n",
"
\n",
"\n",
" surv_48 | 0.1943 | 0.004 | 53.354 | 0.000 | 0.187 | 0.201 | \n",
"
\n",
"\n",
" surv_49 | 0.1328 | 0.004 | 33.429 | 0.000 | 0.125 | 0.141 | \n",
"
\n",
"\n",
" surv_50 | 0.2204 | 0.003 | 81.206 | 0.000 | 0.215 | 0.226 | \n",
"
\n",
"\n",
" surv_51 | 0.1825 | 0.006 | 31.031 | 0.000 | 0.171 | 0.194 | \n",
"
\n",
"\n",
" surv_52 | 0.1958 | 0.004 | 49.681 | 0.000 | 0.188 | 0.204 | \n",
"
\n",
"\n",
" surv_53 | 0.1969 | 0.006 | 33.731 | 0.000 | 0.185 | 0.208 | \n",
"
\n",
"\n",
" surv_54 | -0.1226 | 0.006 | -21.129 | 0.000 | -0.134 | -0.111 | \n",
"
\n",
"\n",
" surv_55 | -0.1446 | 0.006 | -24.102 | 0.000 | -0.156 | -0.133 | \n",
"
\n",
"\n",
" surv_56 | 0.0475 | 0.006 | 7.594 | 0.000 | 0.035 | 0.060 | \n",
"
\n",
"\n",
" surv_57 | -0.0168 | 0.002 | -7.466 | 0.000 | -0.021 | -0.012 | \n",
"
\n",
"\n",
" surv_58 | 0.2192 | 0.004 | 61.165 | 0.000 | 0.212 | 0.226 | \n",
"
\n",
"\n",
" surv_59 | 0.1690 | 0.004 | 38.620 | 0.000 | 0.160 | 0.178 | \n",
"
\n",
"\n",
" surv_60 | 0.1847 | 0.003 | 53.875 | 0.000 | 0.178 | 0.191 | \n",
"
\n",
"\n",
" surv_61 | 0.1604 | 0.003 | 46.577 | 0.000 | 0.154 | 0.167 | \n",
"
\n",
"\n",
" surv_62 | -0.0823 | 0.003 | -30.603 | 0.000 | -0.088 | -0.077 | \n",
"
\n",
"\n",
" surv_63 | -0.0256 | 0.003 | -9.385 | 0.000 | -0.031 | -0.020 | \n",
"
\n",
"\n",
" surv_64 | 0.0493 | 0.015 | 3.376 | 0.001 | 0.021 | 0.078 | \n",
"
\n",
"\n",
" surv_65 | 0.0542 | 0.015 | 3.689 | 0.000 | 0.025 | 0.083 | \n",
"
\n",
"\n",
" weekday_1 | 0.0025 | 0.004 | 0.596 | 0.551 | -0.006 | 0.011 | \n",
"
\n",
"\n",
" weekday_2 | 0.0080 | 0.005 | 1.663 | 0.096 | -0.001 | 0.017 | \n",
"
\n",
"\n",
" weekday_3 | 0.0074 | 0.004 | 2.082 | 0.037 | 0.000 | 0.014 | \n",
"
\n",
"\n",
" weekday_4 | 0.0083 | 0.005 | 1.780 | 0.075 | -0.001 | 0.018 | \n",
"
\n",
"\n",
" weekday_5 | 0.0052 | 0.006 | 0.833 | 0.405 | -0.007 | 0.018 | \n",
"
\n",
"\n",
" weekday_6 | 0.0101 | 0.005 | 2.072 | 0.038 | 0.001 | 0.020 | \n",
"
\n",
"\n",
" dist_2.0 | -0.0024 | 0.003 | -0.873 | 0.383 | -0.008 | 0.003 | \n",
"
\n",
"\n",
" dist_3.0 | -0.0051 | 0.001 | -3.416 | 0.001 | -0.008 | -0.002 | \n",
"
\n",
"\n",
" dist_4.0 | -0.0050 | 0.001 | -4.585 | 0.000 | -0.007 | -0.003 | \n",
"
\n",
"\n",
" dist_5.0 | -0.0043 | 0.005 | -0.832 | 0.406 | -0.014 | 0.006 | \n",
"
\n",
"\n",
" dist_6.0 | -0.0116 | 0.006 | -1.930 | 0.054 | -0.023 | 0.000 | \n",
"
\n",
"\n",
" dist_7.0 | -0.0195 | 0.006 | -3.334 | 0.001 | -0.031 | -0.008 | \n",
"
\n",
"\n",
" dist_8.0 | -0.0220 | 0.005 | -4.088 | 0.000 | -0.032 | -0.011 | \n",
"
\n",
"\n",
" dist_9.0 | -0.0068 | 0.005 | -1.429 | 0.153 | -0.016 | 0.003 | \n",
"
\n",
"\n",
" dist_10.0 | -0.0092 | 0.011 | -0.826 | 0.409 | -0.031 | 0.013 | \n",
"
\n",
"\n",
" dist_11.0 | -0.0194 | 0.008 | -2.380 | 0.017 | -0.035 | -0.003 | \n",
"
\n",
"\n",
" dist_12.0 | -0.0071 | 0.009 | -0.810 | 0.418 | -0.024 | 0.010 | \n",
"
\n",
"\n",
" dist_13.0 | -0.0144 | 0.006 | -2.251 | 0.024 | -0.027 | -0.002 | \n",
"
\n",
"\n",
" dist_14.0 | -0.0200 | 0.008 | -2.583 | 0.010 | -0.035 | -0.005 | \n",
"
\n",
"\n",
" dist_15.0 | -0.0083 | 0.009 | -0.883 | 0.377 | -0.027 | 0.010 | \n",
"
\n",
"\n",
" dist_16.0 | -0.0238 | 0.012 | -1.992 | 0.046 | -0.047 | -0.000 | \n",
"
\n",
"\n",
" dist_17.0 | -0.0176 | 0.014 | -1.279 | 0.201 | -0.045 | 0.009 | \n",
"
\n",
"\n",
" dist_18.0 | -0.0292 | 0.019 | -1.563 | 0.118 | -0.066 | 0.007 | \n",
"
\n",
"\n",
" dist_19.0 | -0.0120 | 0.015 | -0.816 | 0.414 | -0.041 | 0.017 | \n",
"
\n",
"\n",
" dist_20.0 | -0.0260 | 0.007 | -3.655 | 0.000 | -0.040 | -0.012 | \n",
"
\n",
"\n",
" dist_21.0 | -0.0311 | 0.009 | -3.521 | 0.000 | -0.048 | -0.014 | \n",
"
\n",
"\n",
" dist_22.0 | -0.0249 | 0.012 | -2.108 | 0.035 | -0.048 | -0.002 | \n",
"
\n",
"\n",
" dist_23.0 | -0.0046 | 0.008 | -0.562 | 0.574 | -0.021 | 0.012 | \n",
"
\n",
"\n",
" dist_24.0 | -0.0237 | 0.006 | -3.876 | 0.000 | -0.036 | -0.012 | \n",
"
\n",
"\n",
" dist_25.0 | -0.0123 | 0.009 | -1.325 | 0.185 | -0.030 | 0.006 | \n",
"
\n",
"\n",
" dist_26.0 | -0.0198 | 0.013 | -1.560 | 0.119 | -0.045 | 0.005 | \n",
"
\n",
"\n",
" dist_27.0 | -0.0162 | 0.010 | -1.703 | 0.088 | -0.035 | 0.002 | \n",
"
\n",
"\n",
" dist_28.0 | -0.0140 | 0.009 | -1.539 | 0.124 | -0.032 | 0.004 | \n",
"
\n",
"\n",
" dist_29.0 | -0.0247 | 0.013 | -1.833 | 0.067 | -0.051 | 0.002 | \n",
"
\n",
"\n",
" dist_30.0 | -0.0302 | 0.013 | -2.399 | 0.016 | -0.055 | -0.006 | \n",
"
\n",
"\n",
" dist_31.0 | -0.0199 | 0.017 | -1.153 | 0.249 | -0.054 | 0.014 | \n",
"
\n",
"\n",
" dist_32.0 | -0.0251 | 0.013 | -1.906 | 0.057 | -0.051 | 0.001 | \n",
"
\n",
"\n",
" dist_33.0 | -0.0094 | 0.009 | -1.048 | 0.295 | -0.027 | 0.008 | \n",
"
\n",
"\n",
" dist_34.0 | -0.0554 | 0.023 | -2.416 | 0.016 | -0.100 | -0.010 | \n",
"
\n",
"\n",
" dist_35.0 | -0.0379 | 0.019 | -1.985 | 0.047 | -0.075 | -0.000 | \n",
"
\n",
"\n",
" dist_36.0 | -0.0471 | 0.017 | -2.854 | 0.004 | -0.079 | -0.015 | \n",
"
\n",
"\n",
" dist_37.0 | -0.0276 | 0.024 | -1.153 | 0.249 | -0.074 | 0.019 | \n",
"
\n",
"\n",
" dist_38.0 | -0.0425 | 0.013 | -3.339 | 0.001 | -0.067 | -0.018 | \n",
"
\n",
"\n",
" dist_39.0 | -0.0471 | 0.018 | -2.643 | 0.008 | -0.082 | -0.012 | \n",
"
\n",
"\n",
" dist_40.0 | -0.0255 | 0.024 | -1.072 | 0.284 | -0.072 | 0.021 | \n",
"
\n",
"\n",
" dist_41.0 | -0.0346 | 0.014 | -2.469 | 0.014 | -0.062 | -0.007 | \n",
"
\n",
"\n",
" dist_42.0 | -0.0506 | 0.012 | -4.279 | 0.000 | -0.074 | -0.027 | \n",
"
\n",
"\n",
" dist_43.0 | -0.0426 | 0.017 | -2.580 | 0.010 | -0.075 | -0.010 | \n",
"
\n",
"\n",
" dist_44.0 | -0.0263 | 0.011 | -2.338 | 0.019 | -0.048 | -0.004 | \n",
"
\n",
"\n",
" dist_45.0 | -0.0199 | 0.030 | -0.656 | 0.512 | -0.079 | 0.039 | \n",
"
\n",
"\n",
" dist_46.0 | -0.0389 | 0.015 | -2.518 | 0.012 | -0.069 | -0.009 | \n",
"
\n",
"\n",
" dist_47.0 | -0.0451 | 0.025 | -1.822 | 0.068 | -0.094 | 0.003 | \n",
"
\n",
"\n",
" dist_48.0 | -0.0346 | 0.022 | -1.550 | 0.121 | -0.078 | 0.009 | \n",
"
\n",
"\n",
" dist_49.0 | -0.0282 | 0.014 | -2.061 | 0.039 | -0.055 | -0.001 | \n",
"
\n",
"\n",
" dist_50.0 | -0.0163 | 0.008 | -2.034 | 0.042 | -0.032 | -0.001 | \n",
"
\n",
"\n",
" dist_51.0 | -0.0790 | 0.021 | -3.707 | 0.000 | -0.121 | -0.037 | \n",
"
\n",
"\n",
" dist_52.0 | -0.0265 | 0.010 | -2.649 | 0.008 | -0.046 | -0.007 | \n",
"
\n",
"\n",
" dist_53.0 | -0.0372 | 0.017 | -2.183 | 0.029 | -0.071 | -0.004 | \n",
"
\n",
"\n",
" dist_54.0 | -0.0215 | 0.015 | -1.427 | 0.153 | -0.051 | 0.008 | \n",
"
\n",
"\n",
" dist_55.0 | -0.0613 | 0.054 | -1.145 | 0.252 | -0.166 | 0.044 | \n",
"
\n",
"\n",
" dist_56.0 | -0.0376 | 0.008 | -4.784 | 0.000 | -0.053 | -0.022 | \n",
"
\n",
"\n",
" dist_57.0 | -0.0619 | 0.034 | -1.799 | 0.072 | -0.129 | 0.006 | \n",
"
\n",
"\n",
" dist_58.0 | -0.0202 | 0.027 | -0.754 | 0.451 | -0.073 | 0.032 | \n",
"
\n",
"\n",
" dist_59.0 | -0.0844 | 0.035 | -2.407 | 0.016 | -0.153 | -0.016 | \n",
"
\n",
"\n",
" dist_60.0 | 0.0057 | 0.038 | 0.149 | 0.881 | -0.069 | 0.080 | \n",
"
\n",
"\n",
" dist_61.0 | 0.0018 | 0.012 | 0.158 | 0.874 | -0.021 | 0.025 | \n",
"
\n",
"\n",
" dist_62.0 | -0.0517 | 0.037 | -1.403 | 0.161 | -0.124 | 0.021 | \n",
"
\n",
"\n",
" dist_63.0 | -0.0799 | 0.020 | -4.021 | 0.000 | -0.119 | -0.041 | \n",
"
\n",
"\n",
" dist_64.0 | -0.0292 | 0.024 | -1.203 | 0.229 | -0.077 | 0.018 | \n",
"
\n",
"\n",
" dist_65.0 | -0.0494 | 0.018 | -2.805 | 0.005 | -0.084 | -0.015 | \n",
"
\n",
"\n",
" dist_66.0 | -0.0006 | 0.051 | -0.011 | 0.991 | -0.100 | 0.099 | \n",
"
\n",
"\n",
" dist_67.0 | -0.0272 | 0.016 | -1.715 | 0.086 | -0.058 | 0.004 | \n",
"
\n",
"\n",
" dist_68.0 | -0.0528 | 0.028 | -1.908 | 0.056 | -0.107 | 0.001 | \n",
"
\n",
"\n",
" dist_69.0 | -0.0362 | 0.032 | -1.115 | 0.265 | -0.100 | 0.027 | \n",
"
\n",
"\n",
" dist_70.0 | -0.0683 | 0.013 | -5.180 | 0.000 | -0.094 | -0.042 | \n",
"
\n",
"\n",
" dist_71.0 | -0.0148 | 0.016 | -0.926 | 0.354 | -0.046 | 0.017 | \n",
"
\n",
"\n",
" dist_72.0 | -0.0827 | 0.023 | -3.615 | 0.000 | -0.128 | -0.038 | \n",
"
\n",
"\n",
" dist_73.0 | -0.0828 | 0.014 | -5.895 | 0.000 | -0.110 | -0.055 | \n",
"
\n",
"\n",
" dist_74.0 | -0.0559 | 0.024 | -2.358 | 0.018 | -0.102 | -0.009 | \n",
"
\n",
"\n",
" dist_75.0 | -0.0347 | 0.018 | -1.931 | 0.053 | -0.070 | 0.001 | \n",
"
\n",
"\n",
" dist_76.0 | -0.0637 | 0.016 | -3.869 | 0.000 | -0.096 | -0.031 | \n",
"
\n",
"\n",
" dist_77.0 | -0.0799 | 0.032 | -2.503 | 0.012 | -0.143 | -0.017 | \n",
"
\n",
"\n",
" dist_78.0 | -0.0154 | 0.022 | -0.694 | 0.488 | -0.059 | 0.028 | \n",
"
\n",
"\n",
" dist_79.0 | -0.0827 | 0.028 | -2.904 | 0.004 | -0.139 | -0.027 | \n",
"
\n",
"\n",
" dist_80.0 | -0.0561 | 0.022 | -2.582 | 0.010 | -0.099 | -0.014 | \n",
"
\n",
"\n",
" dist_81.0 | -0.0746 | 0.019 | -3.901 | 0.000 | -0.112 | -0.037 | \n",
"
\n",
"\n",
" dist_82.0 | -0.0487 | 0.016 | -3.139 | 0.002 | -0.079 | -0.018 | \n",
"
\n",
"\n",
" dist_83.0 | -0.0284 | 0.032 | -0.890 | 0.374 | -0.091 | 0.034 | \n",
"
\n",
"\n",
" dist_84.0 | -0.0265 | 0.013 | -1.978 | 0.048 | -0.053 | -0.000 | \n",
"
\n",
"\n",
" dist_85.0 | 0.0141 | 0.020 | 0.706 | 0.480 | -0.025 | 0.053 | \n",
"
\n",
"\n",
" dist_86.0 | 0.0051 | 0.083 | 0.062 | 0.951 | -0.157 | 0.167 | \n",
"
\n",
"\n",
" dist_87.0 | 0.0089 | 0.033 | 0.271 | 0.786 | -0.056 | 0.073 | \n",
"
\n",
"\n",
" dist_88.0 | -0.0980 | 0.069 | -1.417 | 0.156 | -0.234 | 0.038 | \n",
"
\n",
"\n",
" dist_89.0 | -0.1763 | 0.093 | -1.905 | 0.057 | -0.358 | 0.005 | \n",
"
\n",
"\n",
" dist_90.0 | -0.1926 | 0.007 | -26.783 | 0.000 | -0.207 | -0.179 | \n",
"
\n",
"\n",
" dist_91.0 | -0.3617 | 0.006 | -64.617 | 0.000 | -0.373 | -0.351 | \n",
"
\n",
"\n",
" dist_93.0 | 0.0271 | 0.352 | 0.077 | 0.939 | -0.662 | 0.716 | \n",
"
\n",
"\n",
" dist_94.0 | -0.0790 | 0.127 | -0.623 | 0.533 | -0.328 | 0.170 | \n",
"
\n",
"\n",
" dist_95.0 | -0.1500 | 0.015 | -9.831 | 0.000 | -0.180 | -0.120 | \n",
"
\n",
"\n",
" dist_96.0 | -0.0238 | 0.016 | -1.455 | 0.146 | -0.056 | 0.008 | \n",
"
\n",
"\n",
" dist_97.0 | -0.0485 | 0.011 | -4.443 | 0.000 | -0.070 | -0.027 | \n",
"
\n",
"\n",
" dist_98.0 | 0.0241 | 0.023 | 1.062 | 0.288 | -0.020 | 0.069 | \n",
"
\n",
"\n",
" dist_99.0 | 0.0249 | 0.020 | 1.230 | 0.219 | -0.015 | 0.065 | \n",
"
\n",
"\n",
" dist_100.0 | -0.0104 | 0.005 | -2.227 | 0.026 | -0.019 | -0.001 | \n",
"
\n",
"\n",
" dist_101.0 | -0.1039 | 0.029 | -3.567 | 0.000 | -0.161 | -0.047 | \n",
"
\n",
"\n",
" dist_102.0 | 0.0491 | 0.007 | 6.817 | 0.000 | 0.035 | 0.063 | \n",
"
\n",
"\n",
" dist_103.0 | -0.1675 | 0.007 | -22.419 | 0.000 | -0.182 | -0.153 | \n",
"
\n",
"\n",
" dist_104.0 | 0.0140 | 0.004 | 3.731 | 0.000 | 0.007 | 0.021 | \n",
"
\n",
"\n",
" dist_106.0 | -0.0234 | 0.006 | -4.138 | 0.000 | -0.034 | -0.012 | \n",
"
\n",
"\n",
" dist_107.0 | -0.1331 | 0.008 | -16.402 | 0.000 | -0.149 | -0.117 | \n",
"
\n",
"\n",
" dist_108.0 | -0.1094 | 0.061 | -1.781 | 0.075 | -0.230 | 0.011 | \n",
"
\n",
"\n",
" dist_109.0 | -0.0756 | 0.007 | -10.644 | 0.000 | -0.090 | -0.062 | \n",
"
\n",
"\n",
" dist_110.0 | -0.3173 | 0.015 | -21.545 | 0.000 | -0.346 | -0.288 | \n",
"
\n",
"\n",
" dist_111.0 | -0.3234 | 0.009 | -37.120 | 0.000 | -0.340 | -0.306 | \n",
"
\n",
"\n",
" dist_114.0 | -0.0938 | 0.065 | -1.441 | 0.149 | -0.221 | 0.034 | \n",
"
\n",
"\n",
" dist_115.0 | -0.0748 | 0.018 | -4.173 | 0.000 | -0.110 | -0.040 | \n",
"
\n",
"\n",
" dist_116.0 | 0.0533 | 0.005 | 10.922 | 0.000 | 0.044 | 0.063 | \n",
"
\n",
"\n",
" dist_117.0 | 0.0753 | 0.004 | 17.032 | 0.000 | 0.067 | 0.084 | \n",
"
\n",
"\n",
" dist_118.0 | -0.0971 | 0.005 | -18.748 | 0.000 | -0.107 | -0.087 | \n",
"
\n",
"\n",
" dist_119.0 | -0.0479 | 0.007 | -6.776 | 0.000 | -0.062 | -0.034 | \n",
"
\n",
"\n",
" dist_121.0 | -0.1373 | 0.008 | -18.243 | 0.000 | -0.152 | -0.123 | \n",
"
\n",
"\n",
" dist_122.0 | -0.0528 | 0.007 | -7.461 | 0.000 | -0.067 | -0.039 | \n",
"
\n",
"\n",
" dist_123.0 | -0.0993 | 0.009 | -11.228 | 0.000 | -0.117 | -0.082 | \n",
"
\n",
"\n",
" dist_nan | 0.2368 | 0.093 | 2.546 | 0.011 | 0.055 | 0.419 | \n",
"
\n",
"\n",
" dummy_1 | 0.8768 | 0.012 | 73.977 | 0.000 | 0.854 | 0.900 | \n",
"
\n",
"\n",
" dummy_2 | 0.8739 | 0.020 | 44.474 | 0.000 | 0.835 | 0.912 | \n",
"
\n",
"\n",
" dummy_3 | 0.8547 | 0.013 | 68.060 | 0.000 | 0.830 | 0.879 | \n",
"
\n",
"\n",
" dummy_4 | 0.8528 | 0.013 | 66.303 | 0.000 | 0.828 | 0.878 | \n",
"
\n",
"\n",
" dummy_5 | 0.8395 | 0.009 | 91.506 | 0.000 | 0.822 | 0.858 | \n",
"
\n",
"\n",
" dummy_6 | 0.8389 | 0.012 | 68.270 | 0.000 | 0.815 | 0.863 | \n",
"
\n",
"\n",
" dummy_7 | 0.8270 | 0.012 | 68.571 | 0.000 | 0.803 | 0.851 | \n",
"
\n",
"\n",
" dummy_8 | 0.8193 | 0.006 | 127.483 | 0.000 | 0.807 | 0.832 | \n",
"
\n",
"\n",
" dummy_9 | 0.8141 | 0.009 | 94.527 | 0.000 | 0.797 | 0.831 | \n",
"
\n",
"\n",
" dummy_10 | 0.8186 | 0.009 | 95.389 | 0.000 | 0.802 | 0.835 | \n",
"
\n",
"\n",
" dummy_11 | 0.8196 | 0.008 | 98.621 | 0.000 | 0.803 | 0.836 | \n",
"
\n",
"\n",
" dummy_12 | 0.8093 | 0.011 | 74.134 | 0.000 | 0.788 | 0.831 | \n",
"
\n",
"\n",
" dummy_13 | 0.7979 | 0.009 | 91.692 | 0.000 | 0.781 | 0.815 | \n",
"
\n",
"\n",
" dummy_14 | 0.7920 | 0.006 | 136.831 | 0.000 | 0.781 | 0.803 | \n",
"
\n",
"\n",
" dummy_15 | 0.8009 | 0.009 | 86.535 | 0.000 | 0.783 | 0.819 | \n",
"
\n",
"\n",
" dummy_16 | 0.7855 | 0.008 | 95.460 | 0.000 | 0.769 | 0.802 | \n",
"
\n",
"\n",
" dummy_17 | 0.7802 | 0.006 | 134.769 | 0.000 | 0.769 | 0.792 | \n",
"
\n",
"\n",
" dummy_18 | 0.7793 | 0.005 | 159.336 | 0.000 | 0.770 | 0.789 | \n",
"
\n",
"\n",
" dummy_19 | 0.7608 | 0.005 | 165.405 | 0.000 | 0.752 | 0.770 | \n",
"
\n",
"\n",
" dummy_20 | 0.7666 | 0.008 | 90.479 | 0.000 | 0.750 | 0.783 | \n",
"
\n",
"\n",
" dummy_21 | 0.7763 | 0.004 | 193.437 | 0.000 | 0.768 | 0.784 | \n",
"
\n",
"\n",
" dummy_22 | 0.7685 | 0.009 | 83.916 | 0.000 | 0.751 | 0.786 | \n",
"
\n",
"\n",
" dummy_23 | 0.7624 | 0.007 | 107.675 | 0.000 | 0.748 | 0.776 | \n",
"
\n",
"\n",
" dummy_24 | 0.7524 | 0.009 | 88.352 | 0.000 | 0.736 | 0.769 | \n",
"
\n",
"\n",
" dummy_25 | 0.7645 | 0.007 | 109.601 | 0.000 | 0.751 | 0.778 | \n",
"
\n",
"\n",
" dummy_26 | 0.7619 | 0.008 | 101.205 | 0.000 | 0.747 | 0.777 | \n",
"
\n",
"\n",
" dummy_27 | 0.7562 | 0.007 | 115.994 | 0.000 | 0.743 | 0.769 | \n",
"
\n",
"\n",
" dummy_28 | 0.7550 | 0.012 | 64.369 | 0.000 | 0.732 | 0.778 | \n",
"
\n",
"\n",
" dummy_29 | 0.7496 | 0.009 | 80.449 | 0.000 | 0.731 | 0.768 | \n",
"
\n",
"\n",
" dummy_30 | 0.7489 | 0.009 | 80.411 | 0.000 | 0.731 | 0.767 | \n",
"
\n",
"\n",
" dummy_31 | 0.7609 | 0.014 | 53.037 | 0.000 | 0.733 | 0.789 | \n",
"
\n",
"\n",
" dummy_32 | 0.7553 | 0.010 | 77.474 | 0.000 | 0.736 | 0.774 | \n",
"
\n",
"\n",
" dummy_33 | 0.7380 | 0.012 | 61.602 | 0.000 | 0.714 | 0.761 | \n",
"
\n",
"\n",
" dummy_34 | 0.7390 | 0.014 | 53.602 | 0.000 | 0.712 | 0.766 | \n",
"
\n",
"\n",
" dummy_35 | 0.7446 | 0.010 | 75.854 | 0.000 | 0.725 | 0.764 | \n",
"
\n",
"\n",
" dummy_36 | 0.7504 | 0.015 | 48.912 | 0.000 | 0.720 | 0.780 | \n",
"
\n",
"\n",
" dummy_37 | 0.7522 | 0.014 | 54.524 | 0.000 | 0.725 | 0.779 | \n",
"
\n",
"\n",
" dummy_38 | 0.7519 | 0.008 | 92.959 | 0.000 | 0.736 | 0.768 | \n",
"
\n",
"\n",
" dummy_39 | 0.7376 | 0.016 | 46.603 | 0.000 | 0.707 | 0.769 | \n",
"
\n",
"\n",
" dummy_40 | 0.7522 | 0.013 | 56.892 | 0.000 | 0.726 | 0.778 | \n",
"
\n",
"\n",
" dummy_41 | 0.7306 | 0.016 | 44.760 | 0.000 | 0.699 | 0.763 | \n",
"
\n",
"\n",
" dummy_42 | 0.7442 | 0.016 | 46.127 | 0.000 | 0.713 | 0.776 | \n",
"
\n",
"\n",
" dummy_43 | 0.7431 | 0.015 | 48.644 | 0.000 | 0.713 | 0.773 | \n",
"
\n",
"\n",
" dummy_44 | 0.7448 | 0.012 | 64.457 | 0.000 | 0.722 | 0.767 | \n",
"
\n",
"\n",
" dummy_45 | 0.7395 | 0.022 | 33.836 | 0.000 | 0.697 | 0.782 | \n",
"
\n",
"\n",
" dummy_46 | 0.7380 | 0.020 | 36.567 | 0.000 | 0.698 | 0.778 | \n",
"
\n",
"\n",
" dummy_47 | 0.7392 | 0.007 | 103.763 | 0.000 | 0.725 | 0.753 | \n",
"
\n",
"\n",
" dummy_48 | 0.7392 | 0.006 | 118.057 | 0.000 | 0.727 | 0.751 | \n",
"
\n",
"\n",
" dummy_49 | 0.7204 | 0.003 | 235.312 | 0.000 | 0.714 | 0.726 | \n",
"
\n",
"\n",
" dummy_50 | 0.7360 | 0.014 | 51.464 | 0.000 | 0.708 | 0.764 | \n",
"
\n",
"\n",
" dummy_51 | 0.7607 | 0.007 | 106.698 | 0.000 | 0.747 | 0.775 | \n",
"
\n",
"\n",
" dummy_52 | 0.7470 | 0.018 | 41.705 | 0.000 | 0.712 | 0.782 | \n",
"
\n",
"\n",
" dummy_53 | 0.7185 | 0.024 | 29.979 | 0.000 | 0.671 | 0.765 | \n",
"
\n",
"\n",
" dummy_54 | 0.7162 | 0.026 | 27.416 | 0.000 | 0.665 | 0.767 | \n",
"
\n",
"\n",
" dummy_55 | 0.7359 | 0.008 | 94.731 | 0.000 | 0.721 | 0.751 | \n",
"
\n",
"\n",
" dummy_56 | 0.7562 | 0.013 | 57.553 | 0.000 | 0.730 | 0.782 | \n",
"
\n",
"\n",
" dummy_57 | 0.7456 | 0.014 | 54.295 | 0.000 | 0.719 | 0.773 | \n",
"
\n",
"\n",
" dummy_58 | 0.7367 | 0.019 | 38.880 | 0.000 | 0.700 | 0.774 | \n",
"
\n",
"\n",
" dummy_59 | 0.7418 | 0.010 | 75.578 | 0.000 | 0.723 | 0.761 | \n",
"
\n",
"\n",
" dummy_60 | 0.7061 | 0.013 | 53.249 | 0.000 | 0.680 | 0.732 | \n",
"
\n",
"
\n",
"\n",
"\n",
" Omnibus: | 32414.573 | Durbin-Watson: | 1.884 | \n",
"
\n",
"\n",
" Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 51459.998 | \n",
"
\n",
"\n",
" Skew: | -1.240 | Prob(JB): | 0.00 | \n",
"
\n",
"\n",
" Kurtosis: | 2.972 | Cond. No. | 182. | \n",
"
\n",
"
Notes:
[1] Standard Errors are robust to cluster correlation (cluster)"
],
"text/latex": [
"\\begin{center}\n",
"\\begin{tabular}{lclc}\n",
"\\toprule\n",
"\\textbf{Dep. Variable:} & int\\_act & \\textbf{ R-squared: } & 0.072 \\\\\n",
"\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.071 \\\\\n",
"\\textbf{Method:} & Least Squares & \\textbf{ F-statistic: } & nan \\\\\n",
"\\textbf{Date:} & Thu, 25 May 2023 & \\textbf{ Prob (F-statistic):} & nan \\\\\n",
"\\textbf{Time:} & 12:14:17 & \\textbf{ Log-Likelihood: } & -99100. \\\\\n",
"\\textbf{No. Observations:} & 200916 & \\textbf{ AIC: } & 1.987e+05 \\\\\n",
"\\textbf{Df Residuals:} & 200668 & \\textbf{ BIC: } & 2.012e+05 \\\\\n",
"\\textbf{Df Model:} & 247 & \\textbf{ } & \\\\\n",
"\\textbf{Covariance Type:} & cluster & \\textbf{ } & \\\\\n",
"\\bottomrule\n",
"\\end{tabular}\n",
"\\begin{tabular}{lcccccc}\n",
" & \\textbf{coef} & \\textbf{std err} & \\textbf{z} & \\textbf{P$> |$z$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n",
"\\midrule\n",
"\\textbf{surv\\_2} & 0.1311 & 0.009 & 14.673 & 0.000 & 0.114 & 0.149 \\\\\n",
"\\textbf{surv\\_3} & 0.1050 & 0.012 & 9.114 & 0.000 & 0.082 & 0.128 \\\\\n",
"\\textbf{surv\\_4} & 0.1484 & 0.007 & 22.369 & 0.000 & 0.135 & 0.161 \\\\\n",
"\\textbf{surv\\_5} & 0.1993 & 0.006 & 34.835 & 0.000 & 0.188 & 0.211 \\\\\n",
"\\textbf{surv\\_6} & 0.0018 & 0.006 & 0.297 & 0.766 & -0.010 & 0.014 \\\\\n",
"\\textbf{surv\\_7} & -0.0542 & 0.003 & -18.761 & 0.000 & -0.060 & -0.049 \\\\\n",
"\\textbf{surv\\_8} & -0.0879 & 0.004 & -23.885 & 0.000 & -0.095 & -0.081 \\\\\n",
"\\textbf{surv\\_9} & -0.0424 & 0.003 & -12.378 & 0.000 & -0.049 & -0.036 \\\\\n",
"\\textbf{surv\\_10} & -0.0261 & 0.002 & -14.318 & 0.000 & -0.030 & -0.023 \\\\\n",
"\\textbf{surv\\_11} & 0.0186 & 0.001 & 17.571 & 0.000 & 0.017 & 0.021 \\\\\n",
"\\textbf{surv\\_12} & -0.0234 & 0.010 & -2.461 & 0.014 & -0.042 & -0.005 \\\\\n",
"\\textbf{surv\\_13} & -0.0117 & 0.003 & -3.555 & 0.000 & -0.018 & -0.005 \\\\\n",
"\\textbf{surv\\_14} & -0.0210 & 0.002 & -8.975 & 0.000 & -0.026 & -0.016 \\\\\n",
"\\textbf{surv\\_15} & -0.0609 & 0.031 & -1.994 & 0.046 & -0.121 & -0.001 \\\\\n",
"\\textbf{surv\\_16} & 0.0967 & 0.003 & 28.467 & 0.000 & 0.090 & 0.103 \\\\\n",
"\\textbf{surv\\_17} & -0.0949 & 0.003 & -36.232 & 0.000 & -0.100 & -0.090 \\\\\n",
"\\textbf{surv\\_18} & -0.0192 & 0.003 & -7.282 & 0.000 & -0.024 & -0.014 \\\\\n",
"\\textbf{surv\\_19} & -0.0338 & 0.002 & -14.979 & 0.000 & -0.038 & -0.029 \\\\\n",
"\\textbf{surv\\_20} & -0.0119 & 0.002 & -5.220 & 0.000 & -0.016 & -0.007 \\\\\n",
"\\textbf{surv\\_21} & 0.2008 & 0.004 & 55.723 & 0.000 & 0.194 & 0.208 \\\\\n",
"\\textbf{surv\\_22} & 0.2633 & 0.003 & 98.844 & 0.000 & 0.258 & 0.269 \\\\\n",
"\\textbf{surv\\_23} & 0.2211 & 0.005 & 43.026 & 0.000 & 0.211 & 0.231 \\\\\n",
"\\textbf{surv\\_24} & -0.0978 & 0.003 & -31.933 & 0.000 & -0.104 & -0.092 \\\\\n",
"\\textbf{surv\\_25} & -0.0339 & 0.003 & -11.092 & 0.000 & -0.040 & -0.028 \\\\\n",
"\\textbf{surv\\_26} & -0.0677 & 0.002 & -35.625 & 0.000 & -0.071 & -0.064 \\\\\n",
"\\textbf{surv\\_27} & 0.0089 & 0.002 & 4.661 & 0.000 & 0.005 & 0.013 \\\\\n",
"\\textbf{surv\\_28} & -0.2647 & 0.093 & -2.845 & 0.004 & -0.447 & -0.082 \\\\\n",
"\\textbf{surv\\_29} & -0.2490 & 0.093 & -2.676 & 0.007 & -0.431 & -0.067 \\\\\n",
"\\textbf{surv\\_30} & 0.2299 & 0.001 & 177.669 & 0.000 & 0.227 & 0.232 \\\\\n",
"\\textbf{surv\\_31} & 0.1351 & 0.002 & 66.140 & 0.000 & 0.131 & 0.139 \\\\\n",
"\\textbf{surv\\_32} & 0.1409 & 0.001 & 115.053 & 0.000 & 0.139 & 0.143 \\\\\n",
"\\textbf{surv\\_33} & 0.1773 & 0.001 & 166.216 & 0.000 & 0.175 & 0.179 \\\\\n",
"\\textbf{surv\\_34} & 0.2325 & 0.003 & 66.853 & 0.000 & 0.226 & 0.239 \\\\\n",
"\\textbf{surv\\_35} & 0.2477 & 0.003 & 86.169 & 0.000 & 0.242 & 0.253 \\\\\n",
"\\textbf{surv\\_36} & 0.2003 & 0.002 & 125.179 & 0.000 & 0.197 & 0.203 \\\\\n",
"\\textbf{surv\\_37} & 0.1971 & 0.002 & 114.849 & 0.000 & 0.194 & 0.200 \\\\\n",
"\\textbf{surv\\_38} & 0.0105 & 0.002 & 5.665 & 0.000 & 0.007 & 0.014 \\\\\n",
"\\textbf{surv\\_39} & 0.1289 & 0.004 & 30.273 & 0.000 & 0.121 & 0.137 \\\\\n",
"\\textbf{surv\\_40} & 0.0177 & 0.002 & 10.193 & 0.000 & 0.014 & 0.021 \\\\\n",
"\\textbf{surv\\_41} & -0.0403 & 0.010 & -4.097 & 0.000 & -0.060 & -0.021 \\\\\n",
"\\textbf{surv\\_42} & -0.1246 & 0.003 & -42.495 & 0.000 & -0.130 & -0.119 \\\\\n",
"\\textbf{surv\\_43} & 0.0563 & 0.009 & 6.124 & 0.000 & 0.038 & 0.074 \\\\\n",
"\\textbf{surv\\_44} & 0.1851 & 0.002 & 79.500 & 0.000 & 0.181 & 0.190 \\\\\n",
"\\textbf{surv\\_45} & 0.2186 & 0.002 & 144.724 & 0.000 & 0.216 & 0.222 \\\\\n",
"\\textbf{surv\\_46} & 0.1201 & 0.002 & 70.394 & 0.000 & 0.117 & 0.123 \\\\\n",
"\\textbf{surv\\_47} & 0.2410 & 0.004 & 67.671 & 0.000 & 0.234 & 0.248 \\\\\n",
"\\textbf{surv\\_48} & 0.1943 & 0.004 & 53.354 & 0.000 & 0.187 & 0.201 \\\\\n",
"\\textbf{surv\\_49} & 0.1328 & 0.004 & 33.429 & 0.000 & 0.125 & 0.141 \\\\\n",
"\\textbf{surv\\_50} & 0.2204 & 0.003 & 81.206 & 0.000 & 0.215 & 0.226 \\\\\n",
"\\textbf{surv\\_51} & 0.1825 & 0.006 & 31.031 & 0.000 & 0.171 & 0.194 \\\\\n",
"\\textbf{surv\\_52} & 0.1958 & 0.004 & 49.681 & 0.000 & 0.188 & 0.204 \\\\\n",
"\\textbf{surv\\_53} & 0.1969 & 0.006 & 33.731 & 0.000 & 0.185 & 0.208 \\\\\n",
"\\textbf{surv\\_54} & -0.1226 & 0.006 & -21.129 & 0.000 & -0.134 & -0.111 \\\\\n",
"\\textbf{surv\\_55} & -0.1446 & 0.006 & -24.102 & 0.000 & -0.156 & -0.133 \\\\\n",
"\\textbf{surv\\_56} & 0.0475 & 0.006 & 7.594 & 0.000 & 0.035 & 0.060 \\\\\n",
"\\textbf{surv\\_57} & -0.0168 & 0.002 & -7.466 & 0.000 & -0.021 & -0.012 \\\\\n",
"\\textbf{surv\\_58} & 0.2192 & 0.004 & 61.165 & 0.000 & 0.212 & 0.226 \\\\\n",
"\\textbf{surv\\_59} & 0.1690 & 0.004 & 38.620 & 0.000 & 0.160 & 0.178 \\\\\n",
"\\textbf{surv\\_60} & 0.1847 & 0.003 & 53.875 & 0.000 & 0.178 & 0.191 \\\\\n",
"\\textbf{surv\\_61} & 0.1604 & 0.003 & 46.577 & 0.000 & 0.154 & 0.167 \\\\\n",
"\\textbf{surv\\_62} & -0.0823 & 0.003 & -30.603 & 0.000 & -0.088 & -0.077 \\\\\n",
"\\textbf{surv\\_63} & -0.0256 & 0.003 & -9.385 & 0.000 & -0.031 & -0.020 \\\\\n",
"\\textbf{surv\\_64} & 0.0493 & 0.015 & 3.376 & 0.001 & 0.021 & 0.078 \\\\\n",
"\\textbf{surv\\_65} & 0.0542 & 0.015 & 3.689 & 0.000 & 0.025 & 0.083 \\\\\n",
"\\textbf{weekday\\_1} & 0.0025 & 0.004 & 0.596 & 0.551 & -0.006 & 0.011 \\\\\n",
"\\textbf{weekday\\_2} & 0.0080 & 0.005 & 1.663 & 0.096 & -0.001 & 0.017 \\\\\n",
"\\textbf{weekday\\_3} & 0.0074 & 0.004 & 2.082 & 0.037 & 0.000 & 0.014 \\\\\n",
"\\textbf{weekday\\_4} & 0.0083 & 0.005 & 1.780 & 0.075 & -0.001 & 0.018 \\\\\n",
"\\textbf{weekday\\_5} & 0.0052 & 0.006 & 0.833 & 0.405 & -0.007 & 0.018 \\\\\n",
"\\textbf{weekday\\_6} & 0.0101 & 0.005 & 2.072 & 0.038 & 0.001 & 0.020 \\\\\n",
"\\textbf{dist\\_2.0} & -0.0024 & 0.003 & -0.873 & 0.383 & -0.008 & 0.003 \\\\\n",
"\\textbf{dist\\_3.0} & -0.0051 & 0.001 & -3.416 & 0.001 & -0.008 & -0.002 \\\\\n",
"\\textbf{dist\\_4.0} & -0.0050 & 0.001 & -4.585 & 0.000 & -0.007 & -0.003 \\\\\n",
"\\textbf{dist\\_5.0} & -0.0043 & 0.005 & -0.832 & 0.406 & -0.014 & 0.006 \\\\\n",
"\\textbf{dist\\_6.0} & -0.0116 & 0.006 & -1.930 & 0.054 & -0.023 & 0.000 \\\\\n",
"\\textbf{dist\\_7.0} & -0.0195 & 0.006 & -3.334 & 0.001 & -0.031 & -0.008 \\\\\n",
"\\textbf{dist\\_8.0} & -0.0220 & 0.005 & -4.088 & 0.000 & -0.032 & -0.011 \\\\\n",
"\\textbf{dist\\_9.0} & -0.0068 & 0.005 & -1.429 & 0.153 & -0.016 & 0.003 \\\\\n",
"\\textbf{dist\\_10.0} & -0.0092 & 0.011 & -0.826 & 0.409 & -0.031 & 0.013 \\\\\n",
"\\textbf{dist\\_11.0} & -0.0194 & 0.008 & -2.380 & 0.017 & -0.035 & -0.003 \\\\\n",
"\\textbf{dist\\_12.0} & -0.0071 & 0.009 & -0.810 & 0.418 & -0.024 & 0.010 \\\\\n",
"\\textbf{dist\\_13.0} & -0.0144 & 0.006 & -2.251 & 0.024 & -0.027 & -0.002 \\\\\n",
"\\textbf{dist\\_14.0} & -0.0200 & 0.008 & -2.583 & 0.010 & -0.035 & -0.005 \\\\\n",
"\\textbf{dist\\_15.0} & -0.0083 & 0.009 & -0.883 & 0.377 & -0.027 & 0.010 \\\\\n",
"\\textbf{dist\\_16.0} & -0.0238 & 0.012 & -1.992 & 0.046 & -0.047 & -0.000 \\\\\n",
"\\textbf{dist\\_17.0} & -0.0176 & 0.014 & -1.279 & 0.201 & -0.045 & 0.009 \\\\\n",
"\\textbf{dist\\_18.0} & -0.0292 & 0.019 & -1.563 & 0.118 & -0.066 & 0.007 \\\\\n",
"\\textbf{dist\\_19.0} & -0.0120 & 0.015 & -0.816 & 0.414 & -0.041 & 0.017 \\\\\n",
"\\textbf{dist\\_20.0} & -0.0260 & 0.007 & -3.655 & 0.000 & -0.040 & -0.012 \\\\\n",
"\\textbf{dist\\_21.0} & -0.0311 & 0.009 & -3.521 & 0.000 & -0.048 & -0.014 \\\\\n",
"\\textbf{dist\\_22.0} & -0.0249 & 0.012 & -2.108 & 0.035 & -0.048 & -0.002 \\\\\n",
"\\textbf{dist\\_23.0} & -0.0046 & 0.008 & -0.562 & 0.574 & -0.021 & 0.012 \\\\\n",
"\\textbf{dist\\_24.0} & -0.0237 & 0.006 & -3.876 & 0.000 & -0.036 & -0.012 \\\\\n",
"\\textbf{dist\\_25.0} & -0.0123 & 0.009 & -1.325 & 0.185 & -0.030 & 0.006 \\\\\n",
"\\textbf{dist\\_26.0} & -0.0198 & 0.013 & -1.560 & 0.119 & -0.045 & 0.005 \\\\\n",
"\\textbf{dist\\_27.0} & -0.0162 & 0.010 & -1.703 & 0.088 & -0.035 & 0.002 \\\\\n",
"\\textbf{dist\\_28.0} & -0.0140 & 0.009 & -1.539 & 0.124 & -0.032 & 0.004 \\\\\n",
"\\textbf{dist\\_29.0} & -0.0247 & 0.013 & -1.833 & 0.067 & -0.051 & 0.002 \\\\\n",
"\\textbf{dist\\_30.0} & -0.0302 & 0.013 & -2.399 & 0.016 & -0.055 & -0.006 \\\\\n",
"\\textbf{dist\\_31.0} & -0.0199 & 0.017 & -1.153 & 0.249 & -0.054 & 0.014 \\\\\n",
"\\textbf{dist\\_32.0} & -0.0251 & 0.013 & -1.906 & 0.057 & -0.051 & 0.001 \\\\\n",
"\\textbf{dist\\_33.0} & -0.0094 & 0.009 & -1.048 & 0.295 & -0.027 & 0.008 \\\\\n",
"\\textbf{dist\\_34.0} & -0.0554 & 0.023 & -2.416 & 0.016 & -0.100 & -0.010 \\\\\n",
"\\textbf{dist\\_35.0} & -0.0379 & 0.019 & -1.985 & 0.047 & -0.075 & -0.000 \\\\\n",
"\\textbf{dist\\_36.0} & -0.0471 & 0.017 & -2.854 & 0.004 & -0.079 & -0.015 \\\\\n",
"\\textbf{dist\\_37.0} & -0.0276 & 0.024 & -1.153 & 0.249 & -0.074 & 0.019 \\\\\n",
"\\textbf{dist\\_38.0} & -0.0425 & 0.013 & -3.339 & 0.001 & -0.067 & -0.018 \\\\\n",
"\\textbf{dist\\_39.0} & -0.0471 & 0.018 & -2.643 & 0.008 & -0.082 & -0.012 \\\\\n",
"\\textbf{dist\\_40.0} & -0.0255 & 0.024 & -1.072 & 0.284 & -0.072 & 0.021 \\\\\n",
"\\textbf{dist\\_41.0} & -0.0346 & 0.014 & -2.469 & 0.014 & -0.062 & -0.007 \\\\\n",
"\\textbf{dist\\_42.0} & -0.0506 & 0.012 & -4.279 & 0.000 & -0.074 & -0.027 \\\\\n",
"\\textbf{dist\\_43.0} & -0.0426 & 0.017 & -2.580 & 0.010 & -0.075 & -0.010 \\\\\n",
"\\textbf{dist\\_44.0} & -0.0263 & 0.011 & -2.338 & 0.019 & -0.048 & -0.004 \\\\\n",
"\\textbf{dist\\_45.0} & -0.0199 & 0.030 & -0.656 & 0.512 & -0.079 & 0.039 \\\\\n",
"\\textbf{dist\\_46.0} & -0.0389 & 0.015 & -2.518 & 0.012 & -0.069 & -0.009 \\\\\n",
"\\textbf{dist\\_47.0} & -0.0451 & 0.025 & -1.822 & 0.068 & -0.094 & 0.003 \\\\\n",
"\\textbf{dist\\_48.0} & -0.0346 & 0.022 & -1.550 & 0.121 & -0.078 & 0.009 \\\\\n",
"\\textbf{dist\\_49.0} & -0.0282 & 0.014 & -2.061 & 0.039 & -0.055 & -0.001 \\\\\n",
"\\textbf{dist\\_50.0} & -0.0163 & 0.008 & -2.034 & 0.042 & -0.032 & -0.001 \\\\\n",
"\\textbf{dist\\_51.0} & -0.0790 & 0.021 & -3.707 & 0.000 & -0.121 & -0.037 \\\\\n",
"\\textbf{dist\\_52.0} & -0.0265 & 0.010 & -2.649 & 0.008 & -0.046 & -0.007 \\\\\n",
"\\textbf{dist\\_53.0} & -0.0372 & 0.017 & -2.183 & 0.029 & -0.071 & -0.004 \\\\\n",
"\\textbf{dist\\_54.0} & -0.0215 & 0.015 & -1.427 & 0.153 & -0.051 & 0.008 \\\\\n",
"\\textbf{dist\\_55.0} & -0.0613 & 0.054 & -1.145 & 0.252 & -0.166 & 0.044 \\\\\n",
"\\textbf{dist\\_56.0} & -0.0376 & 0.008 & -4.784 & 0.000 & -0.053 & -0.022 \\\\\n",
"\\textbf{dist\\_57.0} & -0.0619 & 0.034 & -1.799 & 0.072 & -0.129 & 0.006 \\\\\n",
"\\textbf{dist\\_58.0} & -0.0202 & 0.027 & -0.754 & 0.451 & -0.073 & 0.032 \\\\\n",
"\\textbf{dist\\_59.0} & -0.0844 & 0.035 & -2.407 & 0.016 & -0.153 & -0.016 \\\\\n",
"\\textbf{dist\\_60.0} & 0.0057 & 0.038 & 0.149 & 0.881 & -0.069 & 0.080 \\\\\n",
"\\textbf{dist\\_61.0} & 0.0018 & 0.012 & 0.158 & 0.874 & -0.021 & 0.025 \\\\\n",
"\\textbf{dist\\_62.0} & -0.0517 & 0.037 & -1.403 & 0.161 & -0.124 & 0.021 \\\\\n",
"\\textbf{dist\\_63.0} & -0.0799 & 0.020 & -4.021 & 0.000 & -0.119 & -0.041 \\\\\n",
"\\textbf{dist\\_64.0} & -0.0292 & 0.024 & -1.203 & 0.229 & -0.077 & 0.018 \\\\\n",
"\\textbf{dist\\_65.0} & -0.0494 & 0.018 & -2.805 & 0.005 & -0.084 & -0.015 \\\\\n",
"\\textbf{dist\\_66.0} & -0.0006 & 0.051 & -0.011 & 0.991 & -0.100 & 0.099 \\\\\n",
"\\textbf{dist\\_67.0} & -0.0272 & 0.016 & -1.715 & 0.086 & -0.058 & 0.004 \\\\\n",
"\\textbf{dist\\_68.0} & -0.0528 & 0.028 & -1.908 & 0.056 & -0.107 & 0.001 \\\\\n",
"\\textbf{dist\\_69.0} & -0.0362 & 0.032 & -1.115 & 0.265 & -0.100 & 0.027 \\\\\n",
"\\textbf{dist\\_70.0} & -0.0683 & 0.013 & -5.180 & 0.000 & -0.094 & -0.042 \\\\\n",
"\\textbf{dist\\_71.0} & -0.0148 & 0.016 & -0.926 & 0.354 & -0.046 & 0.017 \\\\\n",
"\\textbf{dist\\_72.0} & -0.0827 & 0.023 & -3.615 & 0.000 & -0.128 & -0.038 \\\\\n",
"\\textbf{dist\\_73.0} & -0.0828 & 0.014 & -5.895 & 0.000 & -0.110 & -0.055 \\\\\n",
"\\textbf{dist\\_74.0} & -0.0559 & 0.024 & -2.358 & 0.018 & -0.102 & -0.009 \\\\\n",
"\\textbf{dist\\_75.0} & -0.0347 & 0.018 & -1.931 & 0.053 & -0.070 & 0.001 \\\\\n",
"\\textbf{dist\\_76.0} & -0.0637 & 0.016 & -3.869 & 0.000 & -0.096 & -0.031 \\\\\n",
"\\textbf{dist\\_77.0} & -0.0799 & 0.032 & -2.503 & 0.012 & -0.143 & -0.017 \\\\\n",
"\\textbf{dist\\_78.0} & -0.0154 & 0.022 & -0.694 & 0.488 & -0.059 & 0.028 \\\\\n",
"\\textbf{dist\\_79.0} & -0.0827 & 0.028 & -2.904 & 0.004 & -0.139 & -0.027 \\\\\n",
"\\textbf{dist\\_80.0} & -0.0561 & 0.022 & -2.582 & 0.010 & -0.099 & -0.014 \\\\\n",
"\\textbf{dist\\_81.0} & -0.0746 & 0.019 & -3.901 & 0.000 & -0.112 & -0.037 \\\\\n",
"\\textbf{dist\\_82.0} & -0.0487 & 0.016 & -3.139 & 0.002 & -0.079 & -0.018 \\\\\n",
"\\textbf{dist\\_83.0} & -0.0284 & 0.032 & -0.890 & 0.374 & -0.091 & 0.034 \\\\\n",
"\\textbf{dist\\_84.0} & -0.0265 & 0.013 & -1.978 & 0.048 & -0.053 & -0.000 \\\\\n",
"\\textbf{dist\\_85.0} & 0.0141 & 0.020 & 0.706 & 0.480 & -0.025 & 0.053 \\\\\n",
"\\textbf{dist\\_86.0} & 0.0051 & 0.083 & 0.062 & 0.951 & -0.157 & 0.167 \\\\\n",
"\\textbf{dist\\_87.0} & 0.0089 & 0.033 & 0.271 & 0.786 & -0.056 & 0.073 \\\\\n",
"\\textbf{dist\\_88.0} & -0.0980 & 0.069 & -1.417 & 0.156 & -0.234 & 0.038 \\\\\n",
"\\textbf{dist\\_89.0} & -0.1763 & 0.093 & -1.905 & 0.057 & -0.358 & 0.005 \\\\\n",
"\\textbf{dist\\_90.0} & -0.1926 & 0.007 & -26.783 & 0.000 & -0.207 & -0.179 \\\\\n",
"\\textbf{dist\\_91.0} & -0.3617 & 0.006 & -64.617 & 0.000 & -0.373 & -0.351 \\\\\n",
"\\textbf{dist\\_93.0} & 0.0271 & 0.352 & 0.077 & 0.939 & -0.662 & 0.716 \\\\\n",
"\\textbf{dist\\_94.0} & -0.0790 & 0.127 & -0.623 & 0.533 & -0.328 & 0.170 \\\\\n",
"\\textbf{dist\\_95.0} & -0.1500 & 0.015 & -9.831 & 0.000 & -0.180 & -0.120 \\\\\n",
"\\textbf{dist\\_96.0} & -0.0238 & 0.016 & -1.455 & 0.146 & -0.056 & 0.008 \\\\\n",
"\\textbf{dist\\_97.0} & -0.0485 & 0.011 & -4.443 & 0.000 & -0.070 & -0.027 \\\\\n",
"\\textbf{dist\\_98.0} & 0.0241 & 0.023 & 1.062 & 0.288 & -0.020 & 0.069 \\\\\n",
"\\textbf{dist\\_99.0} & 0.0249 & 0.020 & 1.230 & 0.219 & -0.015 & 0.065 \\\\\n",
"\\textbf{dist\\_100.0} & -0.0104 & 0.005 & -2.227 & 0.026 & -0.019 & -0.001 \\\\\n",
"\\textbf{dist\\_101.0} & -0.1039 & 0.029 & -3.567 & 0.000 & -0.161 & -0.047 \\\\\n",
"\\textbf{dist\\_102.0} & 0.0491 & 0.007 & 6.817 & 0.000 & 0.035 & 0.063 \\\\\n",
"\\textbf{dist\\_103.0} & -0.1675 & 0.007 & -22.419 & 0.000 & -0.182 & -0.153 \\\\\n",
"\\textbf{dist\\_104.0} & 0.0140 & 0.004 & 3.731 & 0.000 & 0.007 & 0.021 \\\\\n",
"\\textbf{dist\\_106.0} & -0.0234 & 0.006 & -4.138 & 0.000 & -0.034 & -0.012 \\\\\n",
"\\textbf{dist\\_107.0} & -0.1331 & 0.008 & -16.402 & 0.000 & -0.149 & -0.117 \\\\\n",
"\\textbf{dist\\_108.0} & -0.1094 & 0.061 & -1.781 & 0.075 & -0.230 & 0.011 \\\\\n",
"\\textbf{dist\\_109.0} & -0.0756 & 0.007 & -10.644 & 0.000 & -0.090 & -0.062 \\\\\n",
"\\textbf{dist\\_110.0} & -0.3173 & 0.015 & -21.545 & 0.000 & -0.346 & -0.288 \\\\\n",
"\\textbf{dist\\_111.0} & -0.3234 & 0.009 & -37.120 & 0.000 & -0.340 & -0.306 \\\\\n",
"\\textbf{dist\\_114.0} & -0.0938 & 0.065 & -1.441 & 0.149 & -0.221 & 0.034 \\\\\n",
"\\textbf{dist\\_115.0} & -0.0748 & 0.018 & -4.173 & 0.000 & -0.110 & -0.040 \\\\\n",
"\\textbf{dist\\_116.0} & 0.0533 & 0.005 & 10.922 & 0.000 & 0.044 & 0.063 \\\\\n",
"\\textbf{dist\\_117.0} & 0.0753 & 0.004 & 17.032 & 0.000 & 0.067 & 0.084 \\\\\n",
"\\textbf{dist\\_118.0} & -0.0971 & 0.005 & -18.748 & 0.000 & -0.107 & -0.087 \\\\\n",
"\\textbf{dist\\_119.0} & -0.0479 & 0.007 & -6.776 & 0.000 & -0.062 & -0.034 \\\\\n",
"\\textbf{dist\\_121.0} & -0.1373 & 0.008 & -18.243 & 0.000 & -0.152 & -0.123 \\\\\n",
"\\textbf{dist\\_122.0} & -0.0528 & 0.007 & -7.461 & 0.000 & -0.067 & -0.039 \\\\\n",
"\\textbf{dist\\_123.0} & -0.0993 & 0.009 & -11.228 & 0.000 & -0.117 & -0.082 \\\\\n",
"\\textbf{dist\\_nan} & 0.2368 & 0.093 & 2.546 & 0.011 & 0.055 & 0.419 \\\\\n",
"\\textbf{dummy\\_1} & 0.8768 & 0.012 & 73.977 & 0.000 & 0.854 & 0.900 \\\\\n",
"\\textbf{dummy\\_2} & 0.8739 & 0.020 & 44.474 & 0.000 & 0.835 & 0.912 \\\\\n",
"\\textbf{dummy\\_3} & 0.8547 & 0.013 & 68.060 & 0.000 & 0.830 & 0.879 \\\\\n",
"\\textbf{dummy\\_4} & 0.8528 & 0.013 & 66.303 & 0.000 & 0.828 & 0.878 \\\\\n",
"\\textbf{dummy\\_5} & 0.8395 & 0.009 & 91.506 & 0.000 & 0.822 & 0.858 \\\\\n",
"\\textbf{dummy\\_6} & 0.8389 & 0.012 & 68.270 & 0.000 & 0.815 & 0.863 \\\\\n",
"\\textbf{dummy\\_7} & 0.8270 & 0.012 & 68.571 & 0.000 & 0.803 & 0.851 \\\\\n",
"\\textbf{dummy\\_8} & 0.8193 & 0.006 & 127.483 & 0.000 & 0.807 & 0.832 \\\\\n",
"\\textbf{dummy\\_9} & 0.8141 & 0.009 & 94.527 & 0.000 & 0.797 & 0.831 \\\\\n",
"\\textbf{dummy\\_10} & 0.8186 & 0.009 & 95.389 & 0.000 & 0.802 & 0.835 \\\\\n",
"\\textbf{dummy\\_11} & 0.8196 & 0.008 & 98.621 & 0.000 & 0.803 & 0.836 \\\\\n",
"\\textbf{dummy\\_12} & 0.8093 & 0.011 & 74.134 & 0.000 & 0.788 & 0.831 \\\\\n",
"\\textbf{dummy\\_13} & 0.7979 & 0.009 & 91.692 & 0.000 & 0.781 & 0.815 \\\\\n",
"\\textbf{dummy\\_14} & 0.7920 & 0.006 & 136.831 & 0.000 & 0.781 & 0.803 \\\\\n",
"\\textbf{dummy\\_15} & 0.8009 & 0.009 & 86.535 & 0.000 & 0.783 & 0.819 \\\\\n",
"\\textbf{dummy\\_16} & 0.7855 & 0.008 & 95.460 & 0.000 & 0.769 & 0.802 \\\\\n",
"\\textbf{dummy\\_17} & 0.7802 & 0.006 & 134.769 & 0.000 & 0.769 & 0.792 \\\\\n",
"\\textbf{dummy\\_18} & 0.7793 & 0.005 & 159.336 & 0.000 & 0.770 & 0.789 \\\\\n",
"\\textbf{dummy\\_19} & 0.7608 & 0.005 & 165.405 & 0.000 & 0.752 & 0.770 \\\\\n",
"\\textbf{dummy\\_20} & 0.7666 & 0.008 & 90.479 & 0.000 & 0.750 & 0.783 \\\\\n",
"\\textbf{dummy\\_21} & 0.7763 & 0.004 & 193.437 & 0.000 & 0.768 & 0.784 \\\\\n",
"\\textbf{dummy\\_22} & 0.7685 & 0.009 & 83.916 & 0.000 & 0.751 & 0.786 \\\\\n",
"\\textbf{dummy\\_23} & 0.7624 & 0.007 & 107.675 & 0.000 & 0.748 & 0.776 \\\\\n",
"\\textbf{dummy\\_24} & 0.7524 & 0.009 & 88.352 & 0.000 & 0.736 & 0.769 \\\\\n",
"\\textbf{dummy\\_25} & 0.7645 & 0.007 & 109.601 & 0.000 & 0.751 & 0.778 \\\\\n",
"\\textbf{dummy\\_26} & 0.7619 & 0.008 & 101.205 & 0.000 & 0.747 & 0.777 \\\\\n",
"\\textbf{dummy\\_27} & 0.7562 & 0.007 & 115.994 & 0.000 & 0.743 & 0.769 \\\\\n",
"\\textbf{dummy\\_28} & 0.7550 & 0.012 & 64.369 & 0.000 & 0.732 & 0.778 \\\\\n",
"\\textbf{dummy\\_29} & 0.7496 & 0.009 & 80.449 & 0.000 & 0.731 & 0.768 \\\\\n",
"\\textbf{dummy\\_30} & 0.7489 & 0.009 & 80.411 & 0.000 & 0.731 & 0.767 \\\\\n",
"\\textbf{dummy\\_31} & 0.7609 & 0.014 & 53.037 & 0.000 & 0.733 & 0.789 \\\\\n",
"\\textbf{dummy\\_32} & 0.7553 & 0.010 & 77.474 & 0.000 & 0.736 & 0.774 \\\\\n",
"\\textbf{dummy\\_33} & 0.7380 & 0.012 & 61.602 & 0.000 & 0.714 & 0.761 \\\\\n",
"\\textbf{dummy\\_34} & 0.7390 & 0.014 & 53.602 & 0.000 & 0.712 & 0.766 \\\\\n",
"\\textbf{dummy\\_35} & 0.7446 & 0.010 & 75.854 & 0.000 & 0.725 & 0.764 \\\\\n",
"\\textbf{dummy\\_36} & 0.7504 & 0.015 & 48.912 & 0.000 & 0.720 & 0.780 \\\\\n",
"\\textbf{dummy\\_37} & 0.7522 & 0.014 & 54.524 & 0.000 & 0.725 & 0.779 \\\\\n",
"\\textbf{dummy\\_38} & 0.7519 & 0.008 & 92.959 & 0.000 & 0.736 & 0.768 \\\\\n",
"\\textbf{dummy\\_39} & 0.7376 & 0.016 & 46.603 & 0.000 & 0.707 & 0.769 \\\\\n",
"\\textbf{dummy\\_40} & 0.7522 & 0.013 & 56.892 & 0.000 & 0.726 & 0.778 \\\\\n",
"\\textbf{dummy\\_41} & 0.7306 & 0.016 & 44.760 & 0.000 & 0.699 & 0.763 \\\\\n",
"\\textbf{dummy\\_42} & 0.7442 & 0.016 & 46.127 & 0.000 & 0.713 & 0.776 \\\\\n",
"\\textbf{dummy\\_43} & 0.7431 & 0.015 & 48.644 & 0.000 & 0.713 & 0.773 \\\\\n",
"\\textbf{dummy\\_44} & 0.7448 & 0.012 & 64.457 & 0.000 & 0.722 & 0.767 \\\\\n",
"\\textbf{dummy\\_45} & 0.7395 & 0.022 & 33.836 & 0.000 & 0.697 & 0.782 \\\\\n",
"\\textbf{dummy\\_46} & 0.7380 & 0.020 & 36.567 & 0.000 & 0.698 & 0.778 \\\\\n",
"\\textbf{dummy\\_47} & 0.7392 & 0.007 & 103.763 & 0.000 & 0.725 & 0.753 \\\\\n",
"\\textbf{dummy\\_48} & 0.7392 & 0.006 & 118.057 & 0.000 & 0.727 & 0.751 \\\\\n",
"\\textbf{dummy\\_49} & 0.7204 & 0.003 & 235.312 & 0.000 & 0.714 & 0.726 \\\\\n",
"\\textbf{dummy\\_50} & 0.7360 & 0.014 & 51.464 & 0.000 & 0.708 & 0.764 \\\\\n",
"\\textbf{dummy\\_51} & 0.7607 & 0.007 & 106.698 & 0.000 & 0.747 & 0.775 \\\\\n",
"\\textbf{dummy\\_52} & 0.7470 & 0.018 & 41.705 & 0.000 & 0.712 & 0.782 \\\\\n",
"\\textbf{dummy\\_53} & 0.7185 & 0.024 & 29.979 & 0.000 & 0.671 & 0.765 \\\\\n",
"\\textbf{dummy\\_54} & 0.7162 & 0.026 & 27.416 & 0.000 & 0.665 & 0.767 \\\\\n",
"\\textbf{dummy\\_55} & 0.7359 & 0.008 & 94.731 & 0.000 & 0.721 & 0.751 \\\\\n",
"\\textbf{dummy\\_56} & 0.7562 & 0.013 & 57.553 & 0.000 & 0.730 & 0.782 \\\\\n",
"\\textbf{dummy\\_57} & 0.7456 & 0.014 & 54.295 & 0.000 & 0.719 & 0.773 \\\\\n",
"\\textbf{dummy\\_58} & 0.7367 & 0.019 & 38.880 & 0.000 & 0.700 & 0.774 \\\\\n",
"\\textbf{dummy\\_59} & 0.7418 & 0.010 & 75.578 & 0.000 & 0.723 & 0.761 \\\\\n",
"\\textbf{dummy\\_60} & 0.7061 & 0.013 & 53.249 & 0.000 & 0.680 & 0.732 \\\\\n",
"\\bottomrule\n",
"\\end{tabular}\n",
"\\begin{tabular}{lclc}\n",
"\\textbf{Omnibus:} & 32414.573 & \\textbf{ Durbin-Watson: } & 1.884 \\\\\n",
"\\textbf{Prob(Omnibus):} & 0.000 & \\textbf{ Jarque-Bera (JB): } & 51459.998 \\\\\n",
"\\textbf{Skew:} & -1.240 & \\textbf{ Prob(JB): } & 0.00 \\\\\n",
"\\textbf{Kurtosis:} & 2.972 & \\textbf{ Cond. No. } & 182. \\\\\n",
"\\bottomrule\n",
"\\end{tabular}\n",
"%\\caption{OLS Regression Results}\n",
"\\end{center}\n",
"\n",
"Notes: \\newline\n",
" [1] Standard Errors are robust to cluster correlation (cluster)"
],
"text/plain": [
"\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: int_act R-squared: 0.072\n",
"Model: OLS Adj. R-squared: 0.071\n",
"Method: Least Squares F-statistic: nan\n",
"Date: Thu, 25 May 2023 Prob (F-statistic): nan\n",
"Time: 12:14:17 Log-Likelihood: -99100.\n",
"No. Observations: 200916 AIC: 1.987e+05\n",
"Df Residuals: 200668 BIC: 2.012e+05\n",
"Df Model: 247 \n",
"Covariance Type: cluster \n",
"==============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"surv_2 0.1311 0.009 14.673 0.000 0.114 0.149\n",
"surv_3 0.1050 0.012 9.114 0.000 0.082 0.128\n",
"surv_4 0.1484 0.007 22.369 0.000 0.135 0.161\n",
"surv_5 0.1993 0.006 34.835 0.000 0.188 0.211\n",
"surv_6 0.0018 0.006 0.297 0.766 -0.010 0.014\n",
"surv_7 -0.0542 0.003 -18.761 0.000 -0.060 -0.049\n",
"surv_8 -0.0879 0.004 -23.885 0.000 -0.095 -0.081\n",
"surv_9 -0.0424 0.003 -12.378 0.000 -0.049 -0.036\n",
"surv_10 -0.0261 0.002 -14.318 0.000 -0.030 -0.023\n",
"surv_11 0.0186 0.001 17.571 0.000 0.017 0.021\n",
"surv_12 -0.0234 0.010 -2.461 0.014 -0.042 -0.005\n",
"surv_13 -0.0117 0.003 -3.555 0.000 -0.018 -0.005\n",
"surv_14 -0.0210 0.002 -8.975 0.000 -0.026 -0.016\n",
"surv_15 -0.0609 0.031 -1.994 0.046 -0.121 -0.001\n",
"surv_16 0.0967 0.003 28.467 0.000 0.090 0.103\n",
"surv_17 -0.0949 0.003 -36.232 0.000 -0.100 -0.090\n",
"surv_18 -0.0192 0.003 -7.282 0.000 -0.024 -0.014\n",
"surv_19 -0.0338 0.002 -14.979 0.000 -0.038 -0.029\n",
"surv_20 -0.0119 0.002 -5.220 0.000 -0.016 -0.007\n",
"surv_21 0.2008 0.004 55.723 0.000 0.194 0.208\n",
"surv_22 0.2633 0.003 98.844 0.000 0.258 0.269\n",
"surv_23 0.2211 0.005 43.026 0.000 0.211 0.231\n",
"surv_24 -0.0978 0.003 -31.933 0.000 -0.104 -0.092\n",
"surv_25 -0.0339 0.003 -11.092 0.000 -0.040 -0.028\n",
"surv_26 -0.0677 0.002 -35.625 0.000 -0.071 -0.064\n",
"surv_27 0.0089 0.002 4.661 0.000 0.005 0.013\n",
"surv_28 -0.2647 0.093 -2.845 0.004 -0.447 -0.082\n",
"surv_29 -0.2490 0.093 -2.676 0.007 -0.431 -0.067\n",
"surv_30 0.2299 0.001 177.669 0.000 0.227 0.232\n",
"surv_31 0.1351 0.002 66.140 0.000 0.131 0.139\n",
"surv_32 0.1409 0.001 115.053 0.000 0.139 0.143\n",
"surv_33 0.1773 0.001 166.216 0.000 0.175 0.179\n",
"surv_34 0.2325 0.003 66.853 0.000 0.226 0.239\n",
"surv_35 0.2477 0.003 86.169 0.000 0.242 0.253\n",
"surv_36 0.2003 0.002 125.179 0.000 0.197 0.203\n",
"surv_37 0.1971 0.002 114.849 0.000 0.194 0.200\n",
"surv_38 0.0105 0.002 5.665 0.000 0.007 0.014\n",
"surv_39 0.1289 0.004 30.273 0.000 0.121 0.137\n",
"surv_40 0.0177 0.002 10.193 0.000 0.014 0.021\n",
"surv_41 -0.0403 0.010 -4.097 0.000 -0.060 -0.021\n",
"surv_42 -0.1246 0.003 -42.495 0.000 -0.130 -0.119\n",
"surv_43 0.0563 0.009 6.124 0.000 0.038 0.074\n",
"surv_44 0.1851 0.002 79.500 0.000 0.181 0.190\n",
"surv_45 0.2186 0.002 144.724 0.000 0.216 0.222\n",
"surv_46 0.1201 0.002 70.394 0.000 0.117 0.123\n",
"surv_47 0.2410 0.004 67.671 0.000 0.234 0.248\n",
"surv_48 0.1943 0.004 53.354 0.000 0.187 0.201\n",
"surv_49 0.1328 0.004 33.429 0.000 0.125 0.141\n",
"surv_50 0.2204 0.003 81.206 0.000 0.215 0.226\n",
"surv_51 0.1825 0.006 31.031 0.000 0.171 0.194\n",
"surv_52 0.1958 0.004 49.681 0.000 0.188 0.204\n",
"surv_53 0.1969 0.006 33.731 0.000 0.185 0.208\n",
"surv_54 -0.1226 0.006 -21.129 0.000 -0.134 -0.111\n",
"surv_55 -0.1446 0.006 -24.102 0.000 -0.156 -0.133\n",
"surv_56 0.0475 0.006 7.594 0.000 0.035 0.060\n",
"surv_57 -0.0168 0.002 -7.466 0.000 -0.021 -0.012\n",
"surv_58 0.2192 0.004 61.165 0.000 0.212 0.226\n",
"surv_59 0.1690 0.004 38.620 0.000 0.160 0.178\n",
"surv_60 0.1847 0.003 53.875 0.000 0.178 0.191\n",
"surv_61 0.1604 0.003 46.577 0.000 0.154 0.167\n",
"surv_62 -0.0823 0.003 -30.603 0.000 -0.088 -0.077\n",
"surv_63 -0.0256 0.003 -9.385 0.000 -0.031 -0.020\n",
"surv_64 0.0493 0.015 3.376 0.001 0.021 0.078\n",
"surv_65 0.0542 0.015 3.689 0.000 0.025 0.083\n",
"weekday_1 0.0025 0.004 0.596 0.551 -0.006 0.011\n",
"weekday_2 0.0080 0.005 1.663 0.096 -0.001 0.017\n",
"weekday_3 0.0074 0.004 2.082 0.037 0.000 0.014\n",
"weekday_4 0.0083 0.005 1.780 0.075 -0.001 0.018\n",
"weekday_5 0.0052 0.006 0.833 0.405 -0.007 0.018\n",
"weekday_6 0.0101 0.005 2.072 0.038 0.001 0.020\n",
"dist_2.0 -0.0024 0.003 -0.873 0.383 -0.008 0.003\n",
"dist_3.0 -0.0051 0.001 -3.416 0.001 -0.008 -0.002\n",
"dist_4.0 -0.0050 0.001 -4.585 0.000 -0.007 -0.003\n",
"dist_5.0 -0.0043 0.005 -0.832 0.406 -0.014 0.006\n",
"dist_6.0 -0.0116 0.006 -1.930 0.054 -0.023 0.000\n",
"dist_7.0 -0.0195 0.006 -3.334 0.001 -0.031 -0.008\n",
"dist_8.0 -0.0220 0.005 -4.088 0.000 -0.032 -0.011\n",
"dist_9.0 -0.0068 0.005 -1.429 0.153 -0.016 0.003\n",
"dist_10.0 -0.0092 0.011 -0.826 0.409 -0.031 0.013\n",
"dist_11.0 -0.0194 0.008 -2.380 0.017 -0.035 -0.003\n",
"dist_12.0 -0.0071 0.009 -0.810 0.418 -0.024 0.010\n",
"dist_13.0 -0.0144 0.006 -2.251 0.024 -0.027 -0.002\n",
"dist_14.0 -0.0200 0.008 -2.583 0.010 -0.035 -0.005\n",
"dist_15.0 -0.0083 0.009 -0.883 0.377 -0.027 0.010\n",
"dist_16.0 -0.0238 0.012 -1.992 0.046 -0.047 -0.000\n",
"dist_17.0 -0.0176 0.014 -1.279 0.201 -0.045 0.009\n",
"dist_18.0 -0.0292 0.019 -1.563 0.118 -0.066 0.007\n",
"dist_19.0 -0.0120 0.015 -0.816 0.414 -0.041 0.017\n",
"dist_20.0 -0.0260 0.007 -3.655 0.000 -0.040 -0.012\n",
"dist_21.0 -0.0311 0.009 -3.521 0.000 -0.048 -0.014\n",
"dist_22.0 -0.0249 0.012 -2.108 0.035 -0.048 -0.002\n",
"dist_23.0 -0.0046 0.008 -0.562 0.574 -0.021 0.012\n",
"dist_24.0 -0.0237 0.006 -3.876 0.000 -0.036 -0.012\n",
"dist_25.0 -0.0123 0.009 -1.325 0.185 -0.030 0.006\n",
"dist_26.0 -0.0198 0.013 -1.560 0.119 -0.045 0.005\n",
"dist_27.0 -0.0162 0.010 -1.703 0.088 -0.035 0.002\n",
"dist_28.0 -0.0140 0.009 -1.539 0.124 -0.032 0.004\n",
"dist_29.0 -0.0247 0.013 -1.833 0.067 -0.051 0.002\n",
"dist_30.0 -0.0302 0.013 -2.399 0.016 -0.055 -0.006\n",
"dist_31.0 -0.0199 0.017 -1.153 0.249 -0.054 0.014\n",
"dist_32.0 -0.0251 0.013 -1.906 0.057 -0.051 0.001\n",
"dist_33.0 -0.0094 0.009 -1.048 0.295 -0.027 0.008\n",
"dist_34.0 -0.0554 0.023 -2.416 0.016 -0.100 -0.010\n",
"dist_35.0 -0.0379 0.019 -1.985 0.047 -0.075 -0.000\n",
"dist_36.0 -0.0471 0.017 -2.854 0.004 -0.079 -0.015\n",
"dist_37.0 -0.0276 0.024 -1.153 0.249 -0.074 0.019\n",
"dist_38.0 -0.0425 0.013 -3.339 0.001 -0.067 -0.018\n",
"dist_39.0 -0.0471 0.018 -2.643 0.008 -0.082 -0.012\n",
"dist_40.0 -0.0255 0.024 -1.072 0.284 -0.072 0.021\n",
"dist_41.0 -0.0346 0.014 -2.469 0.014 -0.062 -0.007\n",
"dist_42.0 -0.0506 0.012 -4.279 0.000 -0.074 -0.027\n",
"dist_43.0 -0.0426 0.017 -2.580 0.010 -0.075 -0.010\n",
"dist_44.0 -0.0263 0.011 -2.338 0.019 -0.048 -0.004\n",
"dist_45.0 -0.0199 0.030 -0.656 0.512 -0.079 0.039\n",
"dist_46.0 -0.0389 0.015 -2.518 0.012 -0.069 -0.009\n",
"dist_47.0 -0.0451 0.025 -1.822 0.068 -0.094 0.003\n",
"dist_48.0 -0.0346 0.022 -1.550 0.121 -0.078 0.009\n",
"dist_49.0 -0.0282 0.014 -2.061 0.039 -0.055 -0.001\n",
"dist_50.0 -0.0163 0.008 -2.034 0.042 -0.032 -0.001\n",
"dist_51.0 -0.0790 0.021 -3.707 0.000 -0.121 -0.037\n",
"dist_52.0 -0.0265 0.010 -2.649 0.008 -0.046 -0.007\n",
"dist_53.0 -0.0372 0.017 -2.183 0.029 -0.071 -0.004\n",
"dist_54.0 -0.0215 0.015 -1.427 0.153 -0.051 0.008\n",
"dist_55.0 -0.0613 0.054 -1.145 0.252 -0.166 0.044\n",
"dist_56.0 -0.0376 0.008 -4.784 0.000 -0.053 -0.022\n",
"dist_57.0 -0.0619 0.034 -1.799 0.072 -0.129 0.006\n",
"dist_58.0 -0.0202 0.027 -0.754 0.451 -0.073 0.032\n",
"dist_59.0 -0.0844 0.035 -2.407 0.016 -0.153 -0.016\n",
"dist_60.0 0.0057 0.038 0.149 0.881 -0.069 0.080\n",
"dist_61.0 0.0018 0.012 0.158 0.874 -0.021 0.025\n",
"dist_62.0 -0.0517 0.037 -1.403 0.161 -0.124 0.021\n",
"dist_63.0 -0.0799 0.020 -4.021 0.000 -0.119 -0.041\n",
"dist_64.0 -0.0292 0.024 -1.203 0.229 -0.077 0.018\n",
"dist_65.0 -0.0494 0.018 -2.805 0.005 -0.084 -0.015\n",
"dist_66.0 -0.0006 0.051 -0.011 0.991 -0.100 0.099\n",
"dist_67.0 -0.0272 0.016 -1.715 0.086 -0.058 0.004\n",
"dist_68.0 -0.0528 0.028 -1.908 0.056 -0.107 0.001\n",
"dist_69.0 -0.0362 0.032 -1.115 0.265 -0.100 0.027\n",
"dist_70.0 -0.0683 0.013 -5.180 0.000 -0.094 -0.042\n",
"dist_71.0 -0.0148 0.016 -0.926 0.354 -0.046 0.017\n",
"dist_72.0 -0.0827 0.023 -3.615 0.000 -0.128 -0.038\n",
"dist_73.0 -0.0828 0.014 -5.895 0.000 -0.110 -0.055\n",
"dist_74.0 -0.0559 0.024 -2.358 0.018 -0.102 -0.009\n",
"dist_75.0 -0.0347 0.018 -1.931 0.053 -0.070 0.001\n",
"dist_76.0 -0.0637 0.016 -3.869 0.000 -0.096 -0.031\n",
"dist_77.0 -0.0799 0.032 -2.503 0.012 -0.143 -0.017\n",
"dist_78.0 -0.0154 0.022 -0.694 0.488 -0.059 0.028\n",
"dist_79.0 -0.0827 0.028 -2.904 0.004 -0.139 -0.027\n",
"dist_80.0 -0.0561 0.022 -2.582 0.010 -0.099 -0.014\n",
"dist_81.0 -0.0746 0.019 -3.901 0.000 -0.112 -0.037\n",
"dist_82.0 -0.0487 0.016 -3.139 0.002 -0.079 -0.018\n",
"dist_83.0 -0.0284 0.032 -0.890 0.374 -0.091 0.034\n",
"dist_84.0 -0.0265 0.013 -1.978 0.048 -0.053 -0.000\n",
"dist_85.0 0.0141 0.020 0.706 0.480 -0.025 0.053\n",
"dist_86.0 0.0051 0.083 0.062 0.951 -0.157 0.167\n",
"dist_87.0 0.0089 0.033 0.271 0.786 -0.056 0.073\n",
"dist_88.0 -0.0980 0.069 -1.417 0.156 -0.234 0.038\n",
"dist_89.0 -0.1763 0.093 -1.905 0.057 -0.358 0.005\n",
"dist_90.0 -0.1926 0.007 -26.783 0.000 -0.207 -0.179\n",
"dist_91.0 -0.3617 0.006 -64.617 0.000 -0.373 -0.351\n",
"dist_93.0 0.0271 0.352 0.077 0.939 -0.662 0.716\n",
"dist_94.0 -0.0790 0.127 -0.623 0.533 -0.328 0.170\n",
"dist_95.0 -0.1500 0.015 -9.831 0.000 -0.180 -0.120\n",
"dist_96.0 -0.0238 0.016 -1.455 0.146 -0.056 0.008\n",
"dist_97.0 -0.0485 0.011 -4.443 0.000 -0.070 -0.027\n",
"dist_98.0 0.0241 0.023 1.062 0.288 -0.020 0.069\n",
"dist_99.0 0.0249 0.020 1.230 0.219 -0.015 0.065\n",
"dist_100.0 -0.0104 0.005 -2.227 0.026 -0.019 -0.001\n",
"dist_101.0 -0.1039 0.029 -3.567 0.000 -0.161 -0.047\n",
"dist_102.0 0.0491 0.007 6.817 0.000 0.035 0.063\n",
"dist_103.0 -0.1675 0.007 -22.419 0.000 -0.182 -0.153\n",
"dist_104.0 0.0140 0.004 3.731 0.000 0.007 0.021\n",
"dist_106.0 -0.0234 0.006 -4.138 0.000 -0.034 -0.012\n",
"dist_107.0 -0.1331 0.008 -16.402 0.000 -0.149 -0.117\n",
"dist_108.0 -0.1094 0.061 -1.781 0.075 -0.230 0.011\n",
"dist_109.0 -0.0756 0.007 -10.644 0.000 -0.090 -0.062\n",
"dist_110.0 -0.3173 0.015 -21.545 0.000 -0.346 -0.288\n",
"dist_111.0 -0.3234 0.009 -37.120 0.000 -0.340 -0.306\n",
"dist_114.0 -0.0938 0.065 -1.441 0.149 -0.221 0.034\n",
"dist_115.0 -0.0748 0.018 -4.173 0.000 -0.110 -0.040\n",
"dist_116.0 0.0533 0.005 10.922 0.000 0.044 0.063\n",
"dist_117.0 0.0753 0.004 17.032 0.000 0.067 0.084\n",
"dist_118.0 -0.0971 0.005 -18.748 0.000 -0.107 -0.087\n",
"dist_119.0 -0.0479 0.007 -6.776 0.000 -0.062 -0.034\n",
"dist_121.0 -0.1373 0.008 -18.243 0.000 -0.152 -0.123\n",
"dist_122.0 -0.0528 0.007 -7.461 0.000 -0.067 -0.039\n",
"dist_123.0 -0.0993 0.009 -11.228 0.000 -0.117 -0.082\n",
"dist_nan 0.2368 0.093 2.546 0.011 0.055 0.419\n",
"dummy_1 0.8768 0.012 73.977 0.000 0.854 0.900\n",
"dummy_2 0.8739 0.020 44.474 0.000 0.835 0.912\n",
"dummy_3 0.8547 0.013 68.060 0.000 0.830 0.879\n",
"dummy_4 0.8528 0.013 66.303 0.000 0.828 0.878\n",
"dummy_5 0.8395 0.009 91.506 0.000 0.822 0.858\n",
"dummy_6 0.8389 0.012 68.270 0.000 0.815 0.863\n",
"dummy_7 0.8270 0.012 68.571 0.000 0.803 0.851\n",
"dummy_8 0.8193 0.006 127.483 0.000 0.807 0.832\n",
"dummy_9 0.8141 0.009 94.527 0.000 0.797 0.831\n",
"dummy_10 0.8186 0.009 95.389 0.000 0.802 0.835\n",
"dummy_11 0.8196 0.008 98.621 0.000 0.803 0.836\n",
"dummy_12 0.8093 0.011 74.134 0.000 0.788 0.831\n",
"dummy_13 0.7979 0.009 91.692 0.000 0.781 0.815\n",
"dummy_14 0.7920 0.006 136.831 0.000 0.781 0.803\n",
"dummy_15 0.8009 0.009 86.535 0.000 0.783 0.819\n",
"dummy_16 0.7855 0.008 95.460 0.000 0.769 0.802\n",
"dummy_17 0.7802 0.006 134.769 0.000 0.769 0.792\n",
"dummy_18 0.7793 0.005 159.336 0.000 0.770 0.789\n",
"dummy_19 0.7608 0.005 165.405 0.000 0.752 0.770\n",
"dummy_20 0.7666 0.008 90.479 0.000 0.750 0.783\n",
"dummy_21 0.7763 0.004 193.437 0.000 0.768 0.784\n",
"dummy_22 0.7685 0.009 83.916 0.000 0.751 0.786\n",
"dummy_23 0.7624 0.007 107.675 0.000 0.748 0.776\n",
"dummy_24 0.7524 0.009 88.352 0.000 0.736 0.769\n",
"dummy_25 0.7645 0.007 109.601 0.000 0.751 0.778\n",
"dummy_26 0.7619 0.008 101.205 0.000 0.747 0.777\n",
"dummy_27 0.7562 0.007 115.994 0.000 0.743 0.769\n",
"dummy_28 0.7550 0.012 64.369 0.000 0.732 0.778\n",
"dummy_29 0.7496 0.009 80.449 0.000 0.731 0.768\n",
"dummy_30 0.7489 0.009 80.411 0.000 0.731 0.767\n",
"dummy_31 0.7609 0.014 53.037 0.000 0.733 0.789\n",
"dummy_32 0.7553 0.010 77.474 0.000 0.736 0.774\n",
"dummy_33 0.7380 0.012 61.602 0.000 0.714 0.761\n",
"dummy_34 0.7390 0.014 53.602 0.000 0.712 0.766\n",
"dummy_35 0.7446 0.010 75.854 0.000 0.725 0.764\n",
"dummy_36 0.7504 0.015 48.912 0.000 0.720 0.780\n",
"dummy_37 0.7522 0.014 54.524 0.000 0.725 0.779\n",
"dummy_38 0.7519 0.008 92.959 0.000 0.736 0.768\n",
"dummy_39 0.7376 0.016 46.603 0.000 0.707 0.769\n",
"dummy_40 0.7522 0.013 56.892 0.000 0.726 0.778\n",
"dummy_41 0.7306 0.016 44.760 0.000 0.699 0.763\n",
"dummy_42 0.7442 0.016 46.127 0.000 0.713 0.776\n",
"dummy_43 0.7431 0.015 48.644 0.000 0.713 0.773\n",
"dummy_44 0.7448 0.012 64.457 0.000 0.722 0.767\n",
"dummy_45 0.7395 0.022 33.836 0.000 0.697 0.782\n",
"dummy_46 0.7380 0.020 36.567 0.000 0.698 0.778\n",
"dummy_47 0.7392 0.007 103.763 0.000 0.725 0.753\n",
"dummy_48 0.7392 0.006 118.057 0.000 0.727 0.751\n",
"dummy_49 0.7204 0.003 235.312 0.000 0.714 0.726\n",
"dummy_50 0.7360 0.014 51.464 0.000 0.708 0.764\n",
"dummy_51 0.7607 0.007 106.698 0.000 0.747 0.775\n",
"dummy_52 0.7470 0.018 41.705 0.000 0.712 0.782\n",
"dummy_53 0.7185 0.024 29.979 0.000 0.671 0.765\n",
"dummy_54 0.7162 0.026 27.416 0.000 0.665 0.767\n",
"dummy_55 0.7359 0.008 94.731 0.000 0.721 0.751\n",
"dummy_56 0.7562 0.013 57.553 0.000 0.730 0.782\n",
"dummy_57 0.7456 0.014 54.295 0.000 0.719 0.773\n",
"dummy_58 0.7367 0.019 38.880 0.000 0.700 0.774\n",
"dummy_59 0.7418 0.010 75.578 0.000 0.723 0.761\n",
"dummy_60 0.7061 0.013 53.249 0.000 0.680 0.732\n",
"==============================================================================\n",
"Omnibus: 32414.573 Durbin-Watson: 1.884\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 51459.998\n",
"Skew: -1.240 Prob(JB): 0.00\n",
"Kurtosis: 2.972 Cond. No. 182.\n",
"==============================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors are robust to cluster correlation (cluster)\n",
"\"\"\""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = sm.OLS(y, X)\n",
"results = model.fit(cov_type='cluster', cov_kwds={'groups': [df['survey'], df['date_elec']]})\n",
"results.summary()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"consistency = pd.concat([results.params, results.conf_int()], axis=1)\n",
"consistency = consistency[consistency.index.str.contains('dummy_')].reset_index(drop=True)\n",
"consistency.columns = ['est', 'conf_int_low', 'conf_int_high']\n",
"consistency['dist_pre'] = -(consistency.index + 1)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" est | \n",
" conf_int_low | \n",
" conf_int_high | \n",
" dist_pre | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.876793 | \n",
" 0.853563 | \n",
" 0.900023 | \n",
" -1 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.873853 | \n",
" 0.835343 | \n",
" 0.912364 | \n",
" -2 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.854707 | \n",
" 0.830094 | \n",
" 0.879320 | \n",
" -3 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.852763 | \n",
" 0.827555 | \n",
" 0.877972 | \n",
" -4 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.839538 | \n",
" 0.821556 | \n",
" 0.857520 | \n",
" -5 | \n",
"
\n",
" \n",
" 5 | \n",
" 0.838909 | \n",
" 0.814825 | \n",
" 0.862993 | \n",
" -6 | \n",
"
\n",
" \n",
" 6 | \n",
" 0.826957 | \n",
" 0.803320 | \n",
" 0.850594 | \n",
" -7 | \n",
"
\n",
" \n",
" 7 | \n",
" 0.819330 | \n",
" 0.806733 | \n",
" 0.831926 | \n",
" -8 | \n",
"
\n",
" \n",
" 8 | \n",
" 0.814097 | \n",
" 0.797217 | \n",
" 0.830977 | \n",
" -9 | \n",
"
\n",
" \n",
" 9 | \n",
" 0.818631 | \n",
" 0.801811 | \n",
" 0.835452 | \n",
" -10 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" est conf_int_low conf_int_high dist_pre\n",
"0 0.876793 0.853563 0.900023 -1\n",
"1 0.873853 0.835343 0.912364 -2\n",
"2 0.854707 0.830094 0.879320 -3\n",
"3 0.852763 0.827555 0.877972 -4\n",
"4 0.839538 0.821556 0.857520 -5\n",
"5 0.838909 0.814825 0.862993 -6\n",
"6 0.826957 0.803320 0.850594 -7\n",
"7 0.819330 0.806733 0.831926 -8\n",
"8 0.814097 0.797217 0.830977 -9\n",
"9 0.818631 0.801811 0.835452 -10"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"consistency[0:10]"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"consistency.to_csv('consistency.csv', index=False) "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Figure 1 over time\n",
"\n",
"Construct Figure 1 per decade."
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" survey | \n",
" id_surv | \n",
" date_elec | \n",
" decade | \n",
" dist_pre | \n",
" dist_pre_week | \n",
" weekday_pre | \n",
" dist_pos | \n",
" int_act | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 2010 | \n",
" 31 | \n",
" 4 | \n",
" 4 | \n",
" 36.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 2010 | \n",
" 41 | \n",
" 5 | \n",
" 1 | \n",
" 16.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 2010 | \n",
" 16 | \n",
" 2 | \n",
" 5 | \n",
" 20.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 5 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 2010 | \n",
" 23 | \n",
" 3 | \n",
" 5 | \n",
" 35.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 6 | \n",
" AUTNES | \n",
" 1 | \n",
" 2013-09-29 | \n",
" 2010 | \n",
" 33 | \n",
" 4 | \n",
" 2 | \n",
" 17.0 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 334785 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 2010 | \n",
" 12 | \n",
" 1 | \n",
" 2 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334786 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 2010 | \n",
" 10 | \n",
" 1 | \n",
" 4 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334787 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 2010 | \n",
" 11 | \n",
" 1 | \n",
" 3 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 334788 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 2010 | \n",
" 12 | \n",
" 1 | \n",
" 2 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334789 | \n",
" SNES | \n",
" 65 | \n",
" 2014-09-14 | \n",
" 2010 | \n",
" 12 | \n",
" 1 | \n",
" 2 | \n",
" 1.0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
200916 rows × 9 columns
\n",
"
"
],
"text/plain": [
" survey id_surv date_elec decade dist_pre dist_pre_week \n",
"1 AUTNES 1 2013-09-29 2010 31 4 \\\n",
"2 AUTNES 1 2013-09-29 2010 41 5 \n",
"3 AUTNES 1 2013-09-29 2010 16 2 \n",
"5 AUTNES 1 2013-09-29 2010 23 3 \n",
"6 AUTNES 1 2013-09-29 2010 33 4 \n",
"... ... ... ... ... ... ... \n",
"334785 SNES 65 2014-09-14 2010 12 1 \n",
"334786 SNES 65 2014-09-14 2010 10 1 \n",
"334787 SNES 65 2014-09-14 2010 11 1 \n",
"334788 SNES 65 2014-09-14 2010 12 1 \n",
"334789 SNES 65 2014-09-14 2010 12 1 \n",
"\n",
" weekday_pre dist_pos int_act \n",
"1 4 36.0 1 \n",
"2 1 16.0 0 \n",
"3 5 20.0 0 \n",
"5 5 35.0 0 \n",
"6 2 17.0 1 \n",
"... ... ... ... \n",
"334785 2 1.0 1 \n",
"334786 4 1.0 1 \n",
"334787 3 1.0 1 \n",
"334788 2 1.0 0 \n",
"334789 2 1.0 1 \n",
"\n",
"[200916 rows x 9 columns]"
]
},
"execution_count": 164,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_stata('../../datasets/voters/raw/Data/Analysis/analysis_indiv.dta')\n",
"df.dropna(subset=['int_act'], inplace=True)\n",
"df = df[(df['dist_pre'] <= 60) & (df['dist_pre'] > 0)]\n",
"\n",
"df['id_surv'] = df['id_surv'].astype(int)\n",
"df['dist_pre'] = df['dist_pre'].astype(int)\n",
"df['weekday_pre'] = df['weekday_pre'].astype(int)\n",
"df['int_act'] = df['int_act'].astype(int)\n",
"df['decade'] = df['date_elec'].dt.year // 10 * 10\n",
"df['dist_pre_week'] = df['dist_pre'] // 7\n",
"\n",
"df = df[['survey', 'id_surv', 'date_elec', 'decade', 'dist_pre', 'dist_pre_week', 'weekday_pre', 'dist_pos', 'int_act']]\n",
"\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dist_pre_week\n",
"1 48916\n",
"0 28678\n",
"2 27412\n",
"3 26162\n",
"4 23076\n",
"5 18600\n",
"6 13465\n",
"7 9263\n",
"8 5344\n",
"Name: count, dtype: int64"
]
},
"execution_count": 166,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['dist_pre_week'].value_counts()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Helper function"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [],
"source": [
"def get_params(df_all, decade):\n",
" \n",
" df = df_all[df_all['decade'] == decade].copy()\n",
"\n",
" df['survey'], _ = pd.factorize(df['survey'])\n",
" df['date_elec'], _ = pd.factorize(df['date_elec'])\n",
" \n",
" sample_ref = df['dist_pre_week'] == 1\n",
"\n",
" dummy = pd.get_dummies(df['dist_pre_week'], prefix='dummy', dtype=int)\n",
"\n",
" surv_dummy = pd.get_dummies(df['id_surv'], prefix='surv', dtype=int)\n",
" surv_mean = surv_dummy.loc[sample_ref, :].mean()\n",
" calsurv_dummy = surv_dummy.sub(surv_mean)\n",
" calsurv_dummy = calsurv_dummy.iloc[:, 1:]\n",
"\n",
" weekday_dummy = pd.get_dummies(df['weekday_pre'], prefix='weekday', dtype=int)\n",
" weekday_mean = weekday_dummy.loc[sample_ref, :].mean()\n",
" calweekday_dummy = weekday_dummy.sub(weekday_mean)\n",
" calweekday_dummy = calweekday_dummy.iloc[:, 1:]\n",
"\n",
" distpos_dummy = pd.get_dummies(df['dist_pos'], prefix='dist', dummy_na=True, dtype=int)\n",
" distpos_mean = distpos_dummy.loc[sample_ref, :].mean()\n",
" caldistpos_dummy = distpos_dummy.sub(distpos_mean)\n",
" caldistpos_dummy = caldistpos_dummy.iloc[:, 1:]\n",
"\n",
" #X = pd.concat([calsurv_dummy, calweekday_dummy, caldistpos_dummy, dummy], axis=1)\n",
" X = pd.concat([calsurv_dummy, caldistpos_dummy, dummy], axis=1)\n",
" y = df['int_act']\n",
"\n",
" model = sm.OLS(y, X)\n",
" results = model.fit(cov_type='cluster', cov_kwds={'groups': df['date_elec']})\n",
"\n",
" params = pd.concat([results.params, results.conf_int()], axis=1)\n",
" params = params[params.index.str.contains('dummy_')].reset_index(drop=True)\n",
" params.columns = ['est', 'conf_int_low', 'conf_int_high']\n",
" params['dist_pre_week'] = -params.index\n",
" params['decade'] = decade\n",
"\n",
" params = params[['decade', 'dist_pre_week', 'est', 'conf_int_low', 'conf_int_high']]\n",
" \n",
" return params"
]
},
{
"cell_type": "code",
"execution_count": 172,
"metadata": {},
"outputs": [],
"source": [
"decades = list(range(1950, 2020, 10))\n",
"\n",
"params = pd.DataFrame(columns=['decade', 'dist_pre_week', 'est', 'conf_int_low', 'conf_int_high'])\n",
"\n",
"for decade in decades:\n",
" params_d = get_params(df, decade)\n",
" params = pd.concat([params, params_d], axis=0)\n"
]
},
{
"cell_type": "code",
"execution_count": 173,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" decade | \n",
" dist_pre_week | \n",
" est | \n",
" conf_int_low | \n",
" conf_int_high | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1950 | \n",
" 0 | \n",
" 0.809965 | \n",
" 0.740326 | \n",
" 0.879603 | \n",
"
\n",
" \n",
" 1 | \n",
" 1950 | \n",
" -1 | \n",
" 0.772242 | \n",
" 0.759982 | \n",
" 0.784502 | \n",
"
\n",
" \n",
" 2 | \n",
" 1950 | \n",
" -2 | \n",
" 0.789133 | \n",
" 0.780015 | \n",
" 0.798252 | \n",
"
\n",
" \n",
" 3 | \n",
" 1950 | \n",
" -3 | \n",
" 0.735069 | \n",
" 0.725930 | \n",
" 0.744208 | \n",
"
\n",
" \n",
" 4 | \n",
" 1950 | \n",
" -4 | \n",
" 0.762495 | \n",
" 0.750482 | \n",
" 0.774507 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 4 | \n",
" 2010 | \n",
" -4 | \n",
" 0.740299 | \n",
" 0.715450 | \n",
" 0.765149 | \n",
"
\n",
" \n",
" 5 | \n",
" 2010 | \n",
" -5 | \n",
" 0.742977 | \n",
" 0.715965 | \n",
" 0.769990 | \n",
"
\n",
" \n",
" 6 | \n",
" 2010 | \n",
" -6 | \n",
" 0.728303 | \n",
" 0.690194 | \n",
" 0.766412 | \n",
"
\n",
" \n",
" 7 | \n",
" 2010 | \n",
" -7 | \n",
" 0.712137 | \n",
" 0.679395 | \n",
" 0.744880 | \n",
"
\n",
" \n",
" 8 | \n",
" 2010 | \n",
" -8 | \n",
" 0.719720 | \n",
" 0.688898 | \n",
" 0.750542 | \n",
"
\n",
" \n",
"
\n",
"
62 rows × 5 columns
\n",
"
"
],
"text/plain": [
" decade dist_pre_week est conf_int_low conf_int_high\n",
"0 1950 0 0.809965 0.740326 0.879603\n",
"1 1950 -1 0.772242 0.759982 0.784502\n",
"2 1950 -2 0.789133 0.780015 0.798252\n",
"3 1950 -3 0.735069 0.725930 0.744208\n",
"4 1950 -4 0.762495 0.750482 0.774507\n",
".. ... ... ... ... ...\n",
"4 2010 -4 0.740299 0.715450 0.765149\n",
"5 2010 -5 0.742977 0.715965 0.769990\n",
"6 2010 -6 0.728303 0.690194 0.766412\n",
"7 2010 -7 0.712137 0.679395 0.744880\n",
"8 2010 -8 0.719720 0.688898 0.750542\n",
"\n",
"[62 rows x 5 columns]"
]
},
"execution_count": 173,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"params"
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {},
"outputs": [],
"source": [
"params.to_csv('overtime.csv', index=False)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Debates"
]
},
{
"cell_type": "code",
"execution_count": 175,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" month_pre | \n",
" day_pre | \n",
" month_pos | \n",
" day_pos | \n",
" age | \n",
" id_resp | \n",
" day_elec | \n",
" month_elec | \n",
" year_elec | \n",
" year_pre | \n",
" ... | \n",
" dummy_pos107 | \n",
" dummy_pos108 | \n",
" dummy_pos109 | \n",
" dummy_pos110 | \n",
" dummy_pos111 | \n",
" dummy_pos112 | \n",
" dummy_pos113 | \n",
" dummy_pos114 | \n",
" dummy_pos115 | \n",
" dummy_pos116 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 9.0 | \n",
" 4.0 | \n",
" NaN | \n",
" NaN | \n",
" 48.0 | \n",
" 206.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 8.0 | \n",
" 30.0 | \n",
" 10.0 | \n",
" 16.0 | \n",
" 49.0 | \n",
" 3239.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 8.0 | \n",
" 30.0 | \n",
" NaN | \n",
" NaN | \n",
" 50.0 | \n",
" 494.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 8.0 | \n",
" 20.0 | \n",
" 10.0 | \n",
" 21.0 | \n",
" 66.0 | \n",
" 2647.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 9.0 | \n",
" 6.0 | \n",
" 10.0 | \n",
" 16.0 | \n",
" 38.0 | \n",
" 3372.0 | \n",
" 29.0 | \n",
" 9.0 | \n",
" 2013.0 | \n",
" 2013.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 399502 | \n",
" 9.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
" 2.0 | \n",
" 37.0 | \n",
" 3336.0 | \n",
" 24.0 | \n",
" 9.0 | \n",
" 2017.0 | \n",
" 2017.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399503 | \n",
" 8.0 | \n",
" 10.0 | \n",
" 10.0 | \n",
" 10.0 | \n",
" 44.0 | \n",
" 7206.0 | \n",
" 24.0 | \n",
" 9.0 | \n",
" 2017.0 | \n",
" 2017.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399504 | \n",
" 8.0 | \n",
" 3.0 | \n",
" 9.0 | \n",
" 29.0 | \n",
" 38.0 | \n",
" 7551.0 | \n",
" 24.0 | \n",
" 9.0 | \n",
" 2017.0 | \n",
" 2017.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399505 | \n",
" 8.0 | \n",
" 6.0 | \n",
" NaN | \n",
" NaN | \n",
" 53.0 | \n",
" 5519.0 | \n",
" 24.0 | \n",
" 9.0 | \n",
" 2017.0 | \n",
" 2017.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399506 | \n",
" 8.0 | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" 54.0 | \n",
" 6337.0 | \n",
" 24.0 | \n",
" 9.0 | \n",
" 2017.0 | \n",
" 2017.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
"
\n",
"
399507 rows × 359 columns
\n",
"
"
],
"text/plain": [
" month_pre day_pre month_pos day_pos age id_resp day_elec \n",
"0 9.0 4.0 NaN NaN 48.0 206.0 29.0 \\\n",
"1 8.0 30.0 10.0 16.0 49.0 3239.0 29.0 \n",
"2 8.0 30.0 NaN NaN 50.0 494.0 29.0 \n",
"3 8.0 20.0 10.0 21.0 66.0 2647.0 29.0 \n",
"4 9.0 6.0 10.0 16.0 38.0 3372.0 29.0 \n",
"... ... ... ... ... ... ... ... \n",
"399502 9.0 1.0 10.0 2.0 37.0 3336.0 24.0 \n",
"399503 8.0 10.0 10.0 10.0 44.0 7206.0 24.0 \n",
"399504 8.0 3.0 9.0 29.0 38.0 7551.0 24.0 \n",
"399505 8.0 6.0 NaN NaN 53.0 5519.0 24.0 \n",
"399506 8.0 5.0 NaN NaN 54.0 6337.0 24.0 \n",
"\n",
" month_elec year_elec year_pre ... dummy_pos107 dummy_pos108 \n",
"0 9.0 2013.0 2013.0 ... 0.0 0.0 \\\n",
"1 9.0 2013.0 2013.0 ... 0.0 0.0 \n",
"2 9.0 2013.0 2013.0 ... 0.0 0.0 \n",
"3 9.0 2013.0 2013.0 ... 0.0 0.0 \n",
"4 9.0 2013.0 2013.0 ... 0.0 0.0 \n",
"... ... ... ... ... ... ... \n",
"399502 9.0 2017.0 2017.0 ... 0.0 0.0 \n",
"399503 9.0 2017.0 2017.0 ... 0.0 0.0 \n",
"399504 9.0 2017.0 2017.0 ... 0.0 0.0 \n",
"399505 9.0 2017.0 2017.0 ... 0.0 0.0 \n",
"399506 9.0 2017.0 2017.0 ... 0.0 0.0 \n",
"\n",
" dummy_pos109 dummy_pos110 dummy_pos111 dummy_pos112 dummy_pos113 \n",
"0 0.0 0.0 0.0 0.0 0.0 \\\n",
"1 0.0 0.0 0.0 0.0 0.0 \n",
"2 0.0 0.0 0.0 0.0 0.0 \n",
"3 0.0 0.0 0.0 0.0 0.0 \n",
"4 0.0 0.0 0.0 0.0 0.0 \n",
"... ... ... ... ... ... \n",
"399502 0.0 0.0 0.0 0.0 0.0 \n",
"399503 0.0 0.0 0.0 0.0 0.0 \n",
"399504 0.0 0.0 0.0 0.0 0.0 \n",
"399505 0.0 0.0 0.0 0.0 0.0 \n",
"399506 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
" dummy_pos114 dummy_pos115 dummy_pos116 \n",
"0 0.0 0.0 0.0 \n",
"1 0.0 0.0 0.0 \n",
"2 0.0 0.0 0.0 \n",
"3 0.0 0.0 0.0 \n",
"4 0.0 0.0 0.0 \n",
"... ... ... ... \n",
"399502 0.0 0.0 0.0 \n",
"399503 0.0 0.0 0.0 \n",
"399504 0.0 0.0 0.0 \n",
"399505 0.0 0.0 0.0 \n",
"399506 0.0 0.0 0.0 \n",
"\n",
"[399507 rows x 359 columns]"
]
},
"execution_count": 175,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"analysis_debate_indiv = pd.read_stata('../../datasets/voters/raw/Data/Analysis/analysis_debate_indiv.dta')\n",
"analysis_debate_indiv"
]
},
{
"cell_type": "code",
"execution_count": 207,
"metadata": {},
"outputs": [],
"source": [
"analysis_debate_indiv.to_csv('analysis_debate_indiv.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": 199,
"metadata": {},
"outputs": [],
"source": [
"weekday_dummy = list(analysis_debate_indiv.columns[analysis_debate_indiv.columns.str.contains('weekday_dummy')])\n",
"dummy_pos = list(analysis_debate_indiv.columns[analysis_debate_indiv.columns.str.contains('dummy_pos')])\n",
"\n",
"X_cols = weekday_dummy + ['pos'] + dummy_pos + ['dummya', 'dummyl3', 'dummyl2', 'dummyl1', 'dummyu1', 'dummyu2', 'dummyu3', 'dummyb']\n",
"all_cols = ['country', 'date_debate', 'id_date', 'int_act'] + X_cols"
]
},
{
"cell_type": "code",
"execution_count": 203,
"metadata": {},
"outputs": [],
"source": [
"df = analysis_debate_indiv.copy()\n",
"df['id_date'] = df.groupby(['country', 'date_debate']).ngroup()\n",
"df = df.set_index(['id_date', 'country'])"
]
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Canada | \n",
" Germany | \n",
" Netherlands | \n",
" NewZealand | \n",
" UK | \n",
" US | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 1 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 2 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 3 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 4 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 399502 | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 399503 | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 399504 | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 399505 | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 399506 | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
"
\n",
"
399507 rows × 6 columns
\n",
"
"
],
"text/plain": [
" Canada Germany Netherlands NewZealand UK US\n",
"0 False False False False False False\n",
"1 False False False False False False\n",
"2 False False False False False False\n",
"3 False False False False False False\n",
"4 False False False False False False\n",
"... ... ... ... ... ... ...\n",
"399502 False True False False False False\n",
"399503 False True False False False False\n",
"399504 False True False False False False\n",
"399505 False True False False False False\n",
"399506 False True False False False False\n",
"\n",
"[399507 rows x 6 columns]"
]
},
"execution_count": 206,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.get_dummies(df.index.get_level_values('country'), drop_first=True)"
]
},
{
"cell_type": "code",
"execution_count": 200,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" country | \n",
" date_debate | \n",
" id_date | \n",
" int_act | \n",
" weekday_dummy1 | \n",
" weekday_dummy2 | \n",
" weekday_dummy3 | \n",
" weekday_dummy4 | \n",
" weekday_dummy5 | \n",
" weekday_dummy6 | \n",
" ... | \n",
" dummy_pos115 | \n",
" dummy_pos116 | \n",
" dummya | \n",
" dummyl3 | \n",
" dummyl2 | \n",
" dummyl1 | \n",
" dummyu1 | \n",
" dummyu2 | \n",
" dummyu3 | \n",
" dummyb | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" Austria | \n",
" 2013-08-29 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 3 | \n",
" Austria | \n",
" 2013-08-29 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 4 | \n",
" Austria | \n",
" 2013-08-29 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 7 | \n",
" Austria | \n",
" 2013-08-29 | \n",
" 0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 11 | \n",
" Austria | \n",
" 2013-08-29 | \n",
" 0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 399492 | \n",
" Germany | \n",
" 2017-09-03 | \n",
" 7 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399493 | \n",
" Germany | \n",
" 2017-09-03 | \n",
" 7 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399495 | \n",
" Germany | \n",
" 2017-09-03 | \n",
" 7 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399502 | \n",
" Germany | \n",
" 2017-09-03 | \n",
" 7 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 399503 | \n",
" Germany | \n",
" 2017-09-03 | \n",
" 7 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
"
\n",
"
263681 rows × 134 columns
\n",
"
"
],
"text/plain": [
" country date_debate id_date int_act weekday_dummy1 weekday_dummy2 \n",
"1 Austria 2013-08-29 0 0.0 0.0 0.0 \\\n",
"3 Austria 2013-08-29 0 0.0 0.0 1.0 \n",
"4 Austria 2013-08-29 0 0.0 0.0 0.0 \n",
"7 Austria 2013-08-29 0 1.0 0.0 0.0 \n",
"11 Austria 2013-08-29 0 0.0 1.0 0.0 \n",
"... ... ... ... ... ... ... \n",
"399492 Germany 2017-09-03 7 0.0 0.0 0.0 \n",
"399493 Germany 2017-09-03 7 1.0 1.0 0.0 \n",
"399495 Germany 2017-09-03 7 0.0 0.0 1.0 \n",
"399502 Germany 2017-09-03 7 0.0 0.0 0.0 \n",
"399503 Germany 2017-09-03 7 0.0 0.0 0.0 \n",
"\n",
" weekday_dummy3 weekday_dummy4 weekday_dummy5 weekday_dummy6 ... \n",
"1 0.0 0.0 1.0 0.0 ... \\\n",
"3 0.0 0.0 0.0 0.0 ... \n",
"4 0.0 0.0 1.0 0.0 ... \n",
"7 0.0 1.0 0.0 0.0 ... \n",
"11 0.0 0.0 0.0 0.0 ... \n",
"... ... ... ... ... ... \n",
"399492 0.0 0.0 0.0 1.0 ... \n",
"399493 0.0 0.0 0.0 0.0 ... \n",
"399495 0.0 0.0 0.0 0.0 ... \n",
"399502 0.0 0.0 1.0 0.0 ... \n",
"399503 0.0 1.0 0.0 0.0 ... \n",
"\n",
" dummy_pos115 dummy_pos116 dummya dummyl3 dummyl2 dummyl1 \n",
"1 0.0 0.0 0.0 0.0 0.0 0.0 \\\n",
"3 0.0 0.0 1.0 0.0 0.0 0.0 \n",
"4 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"7 0.0 0.0 1.0 0.0 0.0 0.0 \n",
"11 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"... ... ... ... ... ... ... \n",
"399492 0.0 0.0 1.0 0.0 0.0 0.0 \n",
"399493 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"399495 0.0 0.0 1.0 0.0 0.0 0.0 \n",
"399502 0.0 0.0 0.0 0.0 1.0 0.0 \n",
"399503 0.0 0.0 1.0 0.0 0.0 0.0 \n",
"\n",
" dummyu1 dummyu2 dummyu3 dummyb \n",
"1 1.0 0.0 0.0 0.0 \n",
"3 0.0 0.0 0.0 0.0 \n",
"4 0.0 0.0 0.0 1.0 \n",
"7 0.0 0.0 0.0 0.0 \n",
"11 0.0 0.0 0.0 1.0 \n",
"... ... ... ... ... \n",
"399492 0.0 0.0 0.0 0.0 \n",
"399493 1.0 0.0 0.0 0.0 \n",
"399495 0.0 0.0 0.0 0.0 \n",
"399502 0.0 0.0 0.0 0.0 \n",
"399503 0.0 0.0 0.0 0.0 \n",
"\n",
"[263681 rows x 134 columns]"
]
},
"execution_count": 200,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analysis_debate_indiv.copy()\n",
"df['id_date'] = df.groupby(['country', 'date_debate']).ngroup()\n",
"df.dropna(subset=['int_act'], inplace=True)\n",
"\n",
"X = df[X_cols]\n",
"y = df['int_act']\n",
"df = df[all_cols]\n",
"\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 201,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0., 0., 0., ..., 0., 0., 0.], dtype=float32)"
]
},
"execution_count": 201,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['int_act'].values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = sm.OLS(y, X)\n",
"results = model.fit(cov_type='cluster', cov_kwds={'groups': [df['id_date'], df['date_elec']]})\n",
"results.summary()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "twopoints-venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}